login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220890
a(n) = smallest m such that A187824(m) = n, or -1 if A187824 never takes the value n.
4
-1, -1, -1, 2, 3, 4, 5, 29, 41, 55, 71, 881, 791, 9360, 10009, 1079, 30239, -1, 246960, -1, 636481, 1360800, 3160079, -1, 2162161
OFFSET
0,4
COMMENTS
a(17) = -1. Proof: If x mod 9 and x mod 12 are both in {-1, 0, 1} then so is x mod 18. So if x is a number which is congruent to -1, 0 or 1 mod k for k=1..17, then also x mod 18 is congruent to -1, 0 or 1. So there is no x such that A187824(x) = 17. QED
From M. F. Hasler, Dec 30 2012 and Dec 31 2012: (Start)
Similarly, a(19) = -1. Indeed, if x == 0, 1 or -1 (mod 15) and (mod 12), then also (mod 60). [Proof: Write x = 15*(4k+d)+e, |e| < 2, then d = 1, 2, 3 all give impossible x (mod 12).] Therefore A187824 cannot have the value 19 (nor 29, nor 59).
Also, a(23) = -1, because x == 0, 1 or -1 (mod 8) and (mod 12) implies the same (mod 24). [To see this, write x = 12*(2k+d)+e, |e| < 2, then d = 1 gives impossible x (mod 8).] Therefore A187824 cannot have the value 23.
From A220891 one may deduce the values for n = 26, 28, 31, 36, 40, 42, 46, 48, 52, 58, 60, 61 to be a(n) = 39412801, 107881201, 3625549201, 170918748000, 2355997644001, 237662810985599, 4614209634434399, 7522575180120001, 362645725505263201, 10684484093105222399, 442709913651892286399, 5205240636387758366399. (End)
Don Reble shows that a(n) > -1 iff n + 1 is either 12, 2p, 3p or p^k > 3, where p is a prime, k >= 1. - M. F. Hasler, Mar 17 2020
MAPLE
N:= 70: # maximum m
V[0]:= -1: V[1]:= -1: V[2]:= -1:
S[3]:= {$0..5}: M[3]:= 6:
# M[m] is the lcm of 1..m
# S[m] is the set of residues mod M[m] for numbers n with A187824(n)>=m
# A[m] is the set of residues mod M[m] for numbers n with A187824(n)=m-1
for m from 4 to N+1 do
M[m]:= ilcm(M[m-1], m); p:= M[m]/M[m-1];
if p = 1 then T:= S[m-1]
else T:= {seq(seq(a+b*M[m-1], a=S[m-1]), b=0..p-1)}
end if;
S[m], A[m]:= selectremove(t -> member(mods(t, m), {1, 0, -1}), T);
if A[m] = {} then V[m-1]:= -1
else V[m-1]:= min(A[m])
end if;
end do:
seq(V[j], j=0..N);
# Robert Israel, Dec 31 2012
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Dec 30 2012
EXTENSIONS
a(26) = 39412801. Double-checked all lower given values. - M. F. Hasler, Dec 30 2012
STATUS
approved