login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220892
G.f.: (1+8*x+22*x^2+8*x^3+x^4)/(1-x)^6.
4
1, 14, 91, 364, 1085, 2666, 5719, 11096, 19929, 33670, 54131, 83524, 124501, 180194, 254255, 350896, 474929, 631806, 827659, 1069340, 1364461, 1721434, 2149511, 2658824, 3260425, 3966326, 4789539, 5744116, 6845189, 8109010, 9552991, 11195744, 13057121, 15158254, 17521595, 20170956, 23131549
OFFSET
0,2
LINKS
M. Hering and B. J. Howard, The ring of evenly weighted points on the line, arXiv:1211.3941 [math.AG], 2012-2014; See example 3.8.
FORMULA
a(n) = (n+1)*(n^2+3*n+3)*(n^2+n+1)/3. [Colin Barker, Jan 03 2013]
The formula is simpler if the offset is 1 rather than 0. For a(n) = b*(1+b^2+b^4)/3, b >= 1. - N. J. A. Sloane, Nov 12 2019
E.g.f.: exp(x)*(3 + 39*x + 96*x^2 + 66*x^3 + 15*x^4 + x^5)/3. - Stefano Spezia, Dec 22 2021
MATHEMATICA
CoefficientList[Series[(1+8x+22x^2+8x^3+x^4)/(1-x)^6, {x, 0, 40}], x] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 14, 91, 364, 1085, 2666}, 40] (* Harvey P. Dale, Jan 11 2020 *)
PROG
(PARI) a(n)=n*(9+13*n+11*n^2+5*n^3+n^4)/3+1 \\ Charles R Greathouse IV, Jan 03 2013
CROSSREFS
Cf. A220893.
Sequence in context: A047639 A202291 A010930 * A022609 A060217 A113776
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 30 2012
STATUS
approved