login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A220889
a(n) = F(n+8) - (1/6)*(n^4-2*n^3+26*n^2+47*n+132) where F(i) = Fibonacci numbers (A000045).
1
0, 0, 0, 0, 1, 8, 35, 113, 303, 717, 1552, 3145, 6062, 11242, 20230, 35554, 61335, 104274, 175249, 291899, 482805, 794255, 1301190, 2124915, 3461756, 5629428, 9142060, 14831588, 24044173, 38958012, 63097567, 102165605, 165389467, 267699377, 433253020, 701138429, 1134601450
OFFSET
1,6
FORMULA
G.f.: x^5*(x+1)^2 / ((x-1)^5*(x^2+x-1)). [Colin Barker, Jan 03 2013]
MATHEMATICA
Table[Fibonacci[n + 8] - n*(n*(n*(n - 2) + 26) + 47)/6 - 22, {n, 50}] (* or *)
LinearRecurrence[{6, -14, 15, -5, -4, 4, -1}, {0, 0, 0, 0, 1, 8, 35}, 50] (* Paolo Xausa, Mar 19 2024 *)
CROSSREFS
Cf. A000045.
Sequence in context: A266785 A267170 A266762 * A285240 A036598 A229403
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2012
STATUS
approved