login
A220886
Irregular triangular array read by rows: T(n,k) is the number of inequivalent n X n {0,1} matrices modulo permutation of the rows, containing exactly k 1's; n>=0, 0<=k<=n^2.
4
1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 20, 27, 27, 20, 9, 3, 1, 1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1, 1, 5, 25, 95, 330, 1027, 2780, 6550, 13375, 23700, 36403, 48405, 55800, 55800, 48405, 36403, 23700, 13375, 6550, 2780, 1027, 330, 95, 25, 5, 1
OFFSET
0,5
COMMENTS
In other words, two matrices are considered equivalent if one can be obtained from the other by some sequence of interchanges of the rows.
LINKS
EXAMPLE
T(2,2) = 4 because we have: {{0,0},{1,1}}; {{0,1},{1,0}}; {{0,1},{0,1}}; {{1,0},{1,0}} (where the first two matrices were arbitrarily selected as class representatives).
Triangle T(n,k) begins:
1;
1, 1;
1, 2, 4, 2, 1;
1, 3, 9, 20, 27, 27, 20, 9, 3, 1;
1, 4, 16, 48, 133, 272, 468, 636, 720, 636, 468, 272, 133, 48, 16, 4, 1;
...
MAPLE
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n$3)):
seq(T(n), n=0..5); # Alois P. Heinz, Feb 15 2023
MATHEMATICA
nn=100; Table[CoefficientList[Series[CycleIndex[SymmetricGroup[n], s]/.Table[s[i]->(1+x^i)^n, {i, 1, n}], {x, 0, nn}], x], {n, 0, 5}]//Grid
(* Second program: *)
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
T[n_] := CoefficientList[g[n, n, n], x];
Table[T[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
CROSSREFS
Row sums are A060690.
Columns k=0-3 give: A000012, A000027, A000290 (n>=2), A203552 (n>=3).
Main diagonal gives A360660.
Cf. A360693.
Sequence in context: A059317 A322046 A247644 * A256156 A342060 A302828
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Feb 20 2013
STATUS
approved