login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256156
Triangular array of numbers of 2-polymatroids of rank k on n unlabeled points, for n>=0, 0<=k<=2n.
3
1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 10, 12, 10, 3, 1, 1, 4, 21, 49, 78, 49, 21, 4, 1, 1, 5, 39, 172, 584, 778, 584, 172, 39, 5, 1, 1, 6, 68, 573, 5236, 18033, 46661, 18033, 5236, 573, 68, 6, 1, 1, 7, 112, 1890, 72205, 971573, 149636721, 19498369, 149636721, 971573, 72205, 1890, 112, 7, 1
OFFSET
0,6
COMMENTS
The rows are symmetric: a(n,k) = a(n,2n-k).
Starting with n=7, the rows are not unimodal.
LINKS
Thomas J. Savitsky, Enumeration of 2-polymatroids on up to seven elements. SIAM J. Discrete Math., 28(4):1641-1650, 2014. arXiv:1401.8006
EXAMPLE
Triangle starts with:
n=0: 1
n=1: 1 1 1
n=2: 1 2 4 2 1
n=3: 1 3 10 12 10 3 1
n=4: 1 4 21 49 78 49 21 4 1
n=5: 1 5 39 172 584 778 584 172 39 5 1
n=6: 1 6 68 573 5236 18033 46661 18033 5236 573 68 6 1
n=7: 1 7 112 1890 72205 971573 149636721 19498369 149636721 971573 72205 1890 112 7 1
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Max Alekseyev, Mar 16 2015
STATUS
approved