login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247644
Triangle formed from the odd-numbered rows of A088855.
1
1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 9, 9, 9, 3, 1, 1, 4, 16, 24, 36, 24, 16, 4, 1, 1, 5, 25, 50, 100, 100, 100, 50, 25, 5, 1, 1, 6, 36, 90, 225, 300, 400, 300, 225, 90, 36, 6, 1, 1, 7, 49, 147, 441, 735, 1225, 1225, 1225, 735, 441, 147, 49, 7, 1, 1, 8, 64, 224, 784, 1568, 3136, 3920, 4900, 3920, 3136, 1568, 784, 224, 64, 8, 1
OFFSET
1,6
COMMENTS
The rows give the coefficients in the numerator polynomials of the o.g.f.s for the columns of triangle A055898. - Georg Fischer, Aug 16 2021
They also occur (with a factor 2*x) in the numerator polynomials of the difference A157052-A157074. - Georg Fischer, Sep 27 2021
EXAMPLE
Triangle begins:
1,
1,1,1,
1,2,4,2,1,
1,3,9,9,9,3,1,
1,4,16,24,36,24,16,4,1,
1,5,25,50,100,100,100,50,25,5,1,
1,6,36,90,225,300,400,300,225,90,36,6,1,
1,7,49,147,441,735,1225,1225,1225,735,441,147,49,7,1,
1,8,64,224,784,1568,3136,3920,4900,3920,3136,1568,784,224,64,8,1,
...
MATHEMATICA
row[n_] := CoefficientList[Sum[Binomial[n, k]^2 *x^(2*k), {k, 0, n}] + Sum[Binomial[n, k]*Binomial[n, k - 1]* x^(2*k - 1), {k, 0, n}], x];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2018 *)
PROG
(PARI) T(n, k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ A088855
row(n) = vector(2*n-1, k, T(2*n-1, k)); \\ Michel Marcus, Sep 27 2021
CROSSREFS
Cf. A088459 (even numbered rows of A088855).
Sequence in context: A132823 A059317 A322046 * A220886 A256156 A342060
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 23 2014
EXTENSIONS
Row n=8 corrected by Jean-François Alcover, Jun 07 2018
Offset changed to 1 by Georg Fischer, Sep 27 2021
STATUS
approved