OFFSET
1,6
COMMENTS
The rows give the coefficients in the numerator polynomials of the o.g.f.s for the columns of triangle A055898. - Georg Fischer, Aug 16 2021
They also occur (with a factor 2*x) in the numerator polynomials of the difference A157052-A157074. - Georg Fischer, Sep 27 2021
LINKS
Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015-2016.
EXAMPLE
Triangle begins:
1,
1,1,1,
1,2,4,2,1,
1,3,9,9,9,3,1,
1,4,16,24,36,24,16,4,1,
1,5,25,50,100,100,100,50,25,5,1,
1,6,36,90,225,300,400,300,225,90,36,6,1,
1,7,49,147,441,735,1225,1225,1225,735,441,147,49,7,1,
1,8,64,224,784,1568,3136,3920,4900,3920,3136,1568,784,224,64,8,1,
...
MATHEMATICA
row[n_] := CoefficientList[Sum[Binomial[n, k]^2 *x^(2*k), {k, 0, n}] + Sum[Binomial[n, k]*Binomial[n, k - 1]* x^(2*k - 1), {k, 0, n}], x];
Table[row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jun 07 2018 *)
PROG
(PARI) T(n, k) = binomial((n-1)\2, (k-1)\2)*binomial(n\2, k\2); \\ A088855
row(n) = vector(2*n-1, k, T(2*n-1, k)); \\ Michel Marcus, Sep 27 2021
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 23 2014
EXTENSIONS
Row n=8 corrected by Jean-François Alcover, Jun 07 2018
Offset changed to 1 by Georg Fischer, Sep 27 2021
STATUS
approved