login
A247642
Triangle read by rows: T(n,2k+1) = T(n-1,2k-1)+T(n-1,2k), T(n,2k) = T(n-1,2k-2)+2T(n-1,2k-1)+T(n-1,2k).
1
1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 7, 5, 9, 3, 1, 1, 1, 10, 8, 26, 14, 16, 4, 1, 1, 1, 13, 11, 52, 34, 70, 30, 25, 5, 1, 1, 1, 16, 14, 87, 63, 190, 104, 155, 55, 36, 6, 1, 1, 1, 19, 17, 131, 101, 403, 253, 553, 259, 301, 91, 49, 7, 1, 1, 1, 22, 20, 184
OFFSET
0,7
EXAMPLE
Triangle begins:
1
1 1 1
1 1 4 2 1
1 1 7 5 9 3 1
1 1 10 8 26 14 16 4 1
1 1 13 11 52 34 70 30 25 5 1
...
MAPLE
A247642 := proc(n, k)
option remember;
if k < 0 or k > 2*n then
return 0;
elif k = 0 then
return 1 ;
end if;
if type(k, 'odd') then
procname(n-1, k-2)+procname(n-1, k-1) ;
else
procname(n-1, k-2)+2*procname(n-1, k-1)+procname(n-1, k) ;
end if;
end proc: # R. J. Mathar, Oct 25 2014
MATHEMATICA
T[_, 0] = 1; T[n_, k_] /; 0 <= k <= 2n := T[n, k] = If[OddQ[k], T[n-1, k-2] + T[n-1, k-1], T[n-1, k-2] + 2*T[n-1, k-1] + T[n-1, k]]; T[_, _] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, 2n}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)
CROSSREFS
Cf. A000244 (row sums).
Sequence in context: A303599 A068930 A204815 * A144260 A097526 A051149
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Sep 23 2014
STATUS
approved