login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055898
Triangle: Number of directed site animals on a square lattice with n+1 total sites and k sites supported in one particular way.
10
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 16, 7, 1, 1, 15, 39, 31, 9, 1, 1, 21, 81, 101, 51, 11, 1, 1, 28, 150, 272, 209, 76, 13, 1, 1, 36, 256, 636, 696, 376, 106, 15, 1, 1, 45, 410, 1340, 1980, 1496, 615, 141, 17, 1, 1, 55, 625, 2600, 5000, 5032, 2850, 939, 181, 19, 1, 1
OFFSET
0,5
LINKS
A. J. Guttmann, Indicators of solvability for lattice models, Discrete Math., 217 (2000), 167-189 (A_sq of Section 6).
M. Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discr. Math., 180 (1998), 73-106.
FORMULA
G.f.: A(x, y)=(1/2x)((1-(4x/((1+x)(1+x-xy))))^(-1/2) - 1).
T(n,m) = Sum_{k=0..n} C(n-k,m)*Sum_{i=0..n-m-k} (-1)^(n+m-i) *C(n-m-k,i) *C(k+i,k) *C(2*i+1,i+1). - Vladimir Kruchinin, Jan 26 2022
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 6, 5, 1;
1,10,16, 7, 1;
...
MATHEMATICA
nmax = 10;
A[x_, y_] = (1/2) x ((1 - (4 x/((1 + x) (1 + x - x y))))^(-1/2) - 1);
g = A[x, y] + O[x]^(nmax+3);
row[n_] := CoefficientList[Coefficient[g, x, n+2], y];
Table[row[n], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Jul 24 2018 *)
PROG
(Maxima)
T(n, m):=sum(binomial(n-k, m)*sum(binomial(n-m-k, i)*(-1)^(n+m-i)*binomial(k+i, k)*binomial(2*i+1, i+1), i, 0, n-m-k), k, 0, n); /* Vladimir Kruchinin, Jan 26 2022 */
CROSSREFS
Row sums give A005773. Columns 0-8: A000012, A000217, A011863(n-1), A055899-A055904. Cf. A055905, A055907.
Sequence in context: A085478 A129818 A123970 * A145904 A273350 A328083
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jun 13 2000
STATUS
approved