login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129818 Riordan array (1/(1+x), x/(1+x)^2), inverse array is A039599. 12
1, -1, 1, 1, -3, 1, -1, 6, -5, 1, 1, -10, 15, -7, 1, -1, 15, -35, 28, -9, 1, 1, -21, 70, -84, 45, -11, 1, -1, 28, -126, 210, -165, 66, -13, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1, -1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

This sequence is the same as A123970. - T. D. Noe, Sep 30 2011

Row sums: A057078. - Philippe Deléham, Jun 11 2007

Subtriangle of the triangle given by (0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012

This triangle provides the coefficients of powers of x^2 for the even-indexed Chebyshev S polynomials (see A049310): S(2*n,x) = Sum_{k=0..n} T(n,k)*x^(2*k), n >= 0. - Wolfdieter Lang, Dec 17 2012

REFERENCES

Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.

LINKS

Vincenzo Librandi, Rows n = 1..101, flattened

P. Barry, A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2, example 15.

Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

FORMULA

T(n,k) = (-1)^(n-k)*A085478(n,k) = (-1)^(n-k)*binomial(n+k,2*k).

Sum_{k=0..n} T(n,k)*A000531(k) = n^2, with A000531(0)=0. - Philippe Deléham, Jun 11 2007

Sum_{k=0..n} T(n,k)*x^k = A033999(n), A057078(n), A057077(n), A057079(n), A005408(n), A001906(n), A001834(n), A030221(n), A002315(n), A033890(n), A057080(n), A057081(n), A054320(n), A097783(n), A077416(n), A126866(n), A028230(n+1) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, respectively. - Philippe Deléham, Nov 19 2009

O.g.f.: (1+x)/(1+(2-y)*x+x^2). - Wolfdieter Lang, Dec 15 2010.

O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1+x))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010

From Wolfdieter Lang, Dec 20 2010: (Start)

Recurrences from the Z- and A-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.

T(n,0) = -1*T(n-1,0), n >= 1, from the o.g.f. -1 for the Z-sequence (trivial result).

T(n,k) = Sum_{j=0..n-k} A(j)*T(n-1,k-1+j), n >= k >= 1, with A(j):= A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0 (o.g.f. 1/c(x)^2 with the A000108 (Catalan) o.g.f. c(x)). (End)

T(n,k) = (-1)^n*A123970(n,k). - Philippe Deléham, Feb 18 2012

T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 19 2012

EXAMPLE

Triangle T(n,k) begins:

  n\k  0   1    2     3     4     5    6    7    8   9 10 ...

   0:  1

   1: -1   1

   2:  1  -3    1

   3: -1   6   -5     1

   4:  1 -10   15    -7     1

   5: -1  15  -35    28    -9     1

   6:  1 -21   70   -84    45   -11    1

   7: -1  28 -126   210  -165    66  -13    1

   8:  1 -36  210  -462   495  -286   91  -15    1

   9: -1  45 -330   924 -1287  1001 -455  120  -17   1

  10:  1 -55  495 -1716  3003 -3003 1820 -680  153 -19  1

  ... Reformatted by Wolfdieter Lang, Dec 17 2012

Recurrence from the A-sequence A115141:

15 = T(4,2) = 1*6 + (-2)*(-5) + (-1)*1.

(0, -1, 0, -1, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, ...) begins:

  1

  0,  1

  0, -1,   1

  0,  1,  -3,   1

  0, -1,   6,  -5,  1

  0,  1, -10,  15, -7,  1

  0, -1,  15, -35, 28, -9, 1. - Philippe Deléham, Mar 19 2012

Row polynomial for n=3 in terms of x^2: S(6,x) = -1 + 6*x^2 -5*x^4 + 1*x^6, with Chebyshev's S polynomial. See a comment above. - Wolfdieter Lang, Dec 17 2012

MATHEMATICA

max = 10; Flatten[ CoefficientList[#, y] & /@ CoefficientList[ Series[ (1 + x)/(1 + (2 - y)*x + x^2), {x, 0, max}], x]] (* Jean-François Alcover, Sep 29 2011, after Wolfdieter Lang *)

PROG

(Sage)

@CachedFunction

def A129818(n, k):

    if n< 0: return 0

    if n==0: return 1 if k == 0 else 0

    h = A129818(n-1, k) if n==1 else 2*A129818(n-1, k)

    return A129818(n-1, k-1) - A129818(n-2, k) - h

for n in (0..9): [A129818(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012

CROSSREFS

Cf. A039599, A085478, A123970.

Sequence in context: A102036 A121524 A103141 * A085478 A123970 A055898

Adjacent sequences:  A129815 A129816 A129817 * A129819 A129820 A129821

KEYWORD

sign,tabl

AUTHOR

Philippe Deléham, Jun 09 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 01:33 EST 2017. Contains 295954 sequences.