The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129818 Riordan array (1/(1+x), x/(1+x)^2), inverse array is A039599. 12
 1, -1, 1, 1, -3, 1, -1, 6, -5, 1, 1, -10, 15, -7, 1, -1, 15, -35, 28, -9, 1, 1, -21, 70, -84, 45, -11, 1, -1, 28, -126, 210, -165, 66, -13, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1, -1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS This sequence is up to sign the same as A129818. - T. D. Noe, Sep 30 2011 Row sums: A057078. - Philippe Deléham, Jun 11 2007 Subtriangle of the triangle given by (0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012 This triangle provides the coefficients of powers of x^2 for the even-indexed Chebyshev S polynomials (see A049310): S(2*n,x) = Sum_{k=0..n} T(n,k)*x^(2*k), n >= 0. - Wolfdieter Lang, Dec 17 2012 If L(x^n) := C(n) = A000108(n) (Catalan numbers), then the polynomials P_n(x) := Sum_{k=0..n} T(n,k)*x^k are orthogonal with respect to the inner product given by (f(x),g(x)) := L(f(x)*g(x)). - Michael Somos, Jan 03 2019 LINKS Vincenzo Librandi, Rows n = 1..101, flattened Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5. P. Barry, A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2, example 15. Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011. FORMULA T(n,k) = (-1)^(n-k)*A085478(n,k) = (-1)^(n-k)*binomial(n+k,2*k). Sum_{k=0..n} T(n,k)*A000531(k) = n^2, with A000531(0)=0. - Philippe Deléham, Jun 11 2007 Sum_{k=0..n} T(n,k)*x^k = A033999(n), A057078(n), A057077(n), A057079(n), A005408(n), A002878(n), A001834(n), A030221(n), A002315(n), A033890(n), A057080(n), A057081(n), A054320(n), A097783(n), A077416(n), A126866(n), A028230(n+1) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, respectively. - Philippe Deléham, Nov 19 2009 O.g.f.: (1+x)/(1+(2-y)*x+x^2). - Wolfdieter Lang, Dec 15 2010 O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1+x))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010 From Wolfdieter Lang, Dec 20 2010: (Start) Recurrences from the Z- and A-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references. T(n,0) = -1*T(n-1,0), n >= 1, from the o.g.f. -1 for the Z-sequence (trivial result). T(n,k) = Sum_{j=0..n-k} A(j)*T(n-1,k-1+j), n >= k >= 1, with A(j):= A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0 (o.g.f. 1/c(x)^2 with the A000108 (Catalan) o.g.f. c(x)). (End) T(n,k) = (-1)^n*A123970(n,k). - Philippe Deléham, Feb 18 2012 T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 19 2012 A039599(m,n) = Sum_{k=0..n} T(n,k) * C(k+m) where C(n) are the Catalan numbers. - Michael Somos, Jan 03 2019 Equals the matrix inverse of the Riordan square (cf. A321620) of the Catalan numbers. - Peter Luschny, Jan 04 2019 Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): T(n,k) =  (1 + 2*k)/(n - k))*Sum_{j = k..n-1} (-1)^(n-j)*T(j,m), with input T(n,n) = 1, and T(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020 EXAMPLE Triangle T(n,k) begins:   n\k  0   1    2     3     4     5    6    7    8   9 10 ...    0:  1    1: -1   1    2:  1  -3    1    3: -1   6   -5     1    4:  1 -10   15    -7     1    5: -1  15  -35    28    -9     1    6:  1 -21   70   -84    45   -11    1    7: -1  28 -126   210  -165    66  -13    1    8:  1 -36  210  -462   495  -286   91  -15    1    9: -1  45 -330   924 -1287  1001 -455  120  -17   1   10:  1 -55  495 -1716  3003 -3003 1820 -680  153 -19  1   ... Reformatted by Wolfdieter Lang, Dec 17 2012 Recurrence from the A-sequence A115141: 15 = T(4,2) = 1*6 + (-2)*(-5) + (-1)*1. (0, -1, 0, -1, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, ...) begins:   1   0,  1   0, -1,   1   0,  1,  -3,   1   0, -1,   6,  -5,  1   0,  1, -10,  15, -7,  1   0, -1,  15, -35, 28, -9, 1. - Philippe Deléham, Mar 19 2012 Row polynomial for n=3 in terms of x^2: S(6,x) = -1 + 6*x^2 -5*x^4 + 1*x^6, with Chebyshev's S polynomial. See a comment above. - Wolfdieter Lang, Dec 17 2012 Boas-Buck type recurrence: -35 = T(5,2) = (5/3)*(-1*1 +1*(-5) - 1*15) = -3*7 = -35. - Wolfdieter Lang, Jun 03 2020 MAPLE # The function RiordanSquare is defined in A321620. RiordanSquare((1 - sqrt(1 - 4*x))/(2*x), 10): LinearAlgebra[MatrixInverse](%); # Peter Luschny, Jan 04 2019 MATHEMATICA max = 10; Flatten[ CoefficientList[#, y] & /@ CoefficientList[ Series[ (1 + x)/(1 + (2 - y)*x + x^2), {x, 0, max}], x]] (* Jean-François Alcover, Sep 29 2011, after Wolfdieter Lang *) PROG (Sage) @CachedFunction def A129818(n, k):     if n< 0: return 0     if n==0: return 1 if k == 0 else 0     h = A129818(n-1, k) if n==1 else 2*A129818(n-1, k)     return A129818(n-1, k-1) - A129818(n-2, k) - h for n in (0..9): [A129818(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012 CROSSREFS Cf. A039599, A085478, A123970, A321620. Sequence in context: A121524 A103141 A085478 * A123970 A055898 A145904 Adjacent sequences:  A129815 A129816 A129817 * A129819 A129820 A129821 KEYWORD sign,tabl AUTHOR Philippe Deléham, Jun 09 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 22:05 EST 2022. Contains 350601 sequences. (Running on oeis4.)