login
A129819
Antidiagonal sums of triangular array T: T(j,k) = (k+1)/2 for odd k, T(j,k) = 0 for k = 0, T(j,k) = j+1-k/2 for even k > 0; 0 <= k <= j.
8
0, 0, 1, 1, 3, 4, 7, 8, 12, 14, 19, 21, 27, 30, 37, 40, 48, 52, 61, 65, 75, 80, 91, 96, 108, 114, 127, 133, 147, 154, 169, 176, 192, 200, 217, 225, 243, 252, 271, 280, 300, 310, 331, 341, 363, 374, 397, 408, 432, 444, 469, 481, 507, 520, 547, 560, 588, 602, 631
OFFSET
0,5
COMMENTS
Interleaving of A077043 and A006578.
First differences are in A124072.
If the values of the second, fourth, sixth, ... column are replaced by the corresponding negative values, the antidiagonal sums of the resulting triangular array are 0, 0, 1, 1, -1, -2, -1, -2, -6, -8, -7, -9, ... .
Row sums of triangle A168316 = (1, 1, 3, 4, 7, 8, 12, ...). - Gary W. Adamson, Nov 22 2009
LINKS
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7) for n > 6, with a(0) = 0, a(1) = 0, a(2) = 1, a(3) = 1, a(4) = 3, a(5) = 4, a(6) = 7.
G.f.: x^2*(1+x^2+x^3)/((1-x)^3*(1+x)^2*(1+x^2)).
a(n) = (3/16)*(n+2)*(n+1) - (5/8)*(n+1) + 7/32 + (3/32)*(-1)^n + (1/16)*(n+1)*(-1)^n - (1/8)*cos(n*Pi/2) + (1/8)*sin(n*Pi/2). - Richard Choulet, Nov 27 2008
EXAMPLE
First seven rows of T are
0;
0, 1;
0, 1, 2;
0, 1, 3, 2;
0, 1, 4, 2, 3;
0, 1, 5, 2, 4, 3;
0, 1, 6, 2, 5, 3, 4;.
MATHEMATICA
CoefficientList[Series[x^2*(1+x^2+x^3)/((1-x)*(1-x^2)*(1-x^4)), {x, 0, 70}], x] (* G. C. Greubel, Sep 19 2024 *)
PROG
(Magma) m:=59; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do for k:=2 to j do if k mod 2 eq 0 then M[j, k]:= k div 2; else M[j, k]:=j-(k div 2); end if; end for; end for; [ &+[ M[j-k+1, k]: k in [1..(j+1) div 2] ]: j in [1..m] ]; // Klaus Brockhaus, Jul 16 2007
(Magma)
A129819:= func< n | Floor(((n-1)*(3*n+1) +(2*n+5)*((n+1) mod 2))/16) >;
[A129819(n): n in [0..70]]; // G. C. Greubel, Sep 19 2024
(PARI) {vector(59, n, (n-2+n%2)*(n+n%2)/8+floor((n-2-n%2)^2/16))} \\ Klaus Brockhaus, Jul 16 2007
(SageMath)
def A129819(n): return ((n-1)*(3*n+1) + (2*n+5)*((n+1)%2))//16
[A129819(n) for n in range(71)] # G. C. Greubel, Sep 19 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, May 20 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jul 16 2007
STATUS
approved