login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124072
First differences of A129819.
3
0, 1, 0, 2, 1, 3, 1, 4, 2, 5, 2, 6, 3, 7, 3, 8, 4, 9, 4, 10, 5, 11, 5, 12, 6, 13, 6, 14, 7, 15, 7, 16, 8, 17, 8, 18, 9, 19, 9, 20, 10, 21, 10, 22, 11, 23, 11, 24, 12, 25, 12, 26
OFFSET
0,4
COMMENTS
A129819 and its repeated differences are
0.0.1..1..3..4..7...8..12..14.19..21.27....
..0.1..0..2..1..3...1...4...2..5...2..6....
....1.-1..2.-1..2..-2...3..-2..3..-3..4....
......-2..3.-3..3..-4...5..-5..5..-6..7....
..........5.-6..6..-7...9.-10.10.-11.13...
...........-11.12.-13..16.-19.20.-21.24.-27
...............23.-25..29.-35.39.-41.45.-51
The left edge is A130668.
I discovered the array 1 1 -2 1 -3 2 in studying the singular points of planar polynomial differential systems (inspired by the reference).
LINKS
Paul Curtz, Stabilite locale des systemes quadratiques, Ann. sc. Ecole Norm. Sup. vol 13 no 3 (1980) pp 293-302.
FORMULA
a(2n) = A004526(n).
a(2n+1) = A000027(n+1) .
G.f.: x*(1+x^2+x^3)/((1-x)^2*(1+x)^2*(1+x^2)). - R. J. Mathar, Feb 25 2009
From G. C. Greubel, Sep 17 2024: (Start)
a(n) = (1/8)*(3*n + 1 - (-1)^n*(n + 3) + i^n*(1 + (-1)^n)).
E.g.f.: (1/4)*( cos(x) - (1-2*x)*cosh(x) + (2+x)*sinh(x) ). (End)
MATHEMATICA
a[n_?OddQ] := (n+1)/2; a[n_?EvenQ] := Floor[n^2/16] - Floor[(n-2)^2/16]; Table[a[n], {n, 0, 51}] (* Jean-François Alcover, Aug 13 2012 *)
LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, 0, 2, 1, 3}, 61] (* G. C. Greubel, Sep 17 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 61);
[0] cat Coefficients(R!( x*(1+x^2+x^3)/((1-x^2)*(1-x^4)) )); // G. C. Greubel, Sep 17 2024
(SageMath)
def A124072_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+x^2+x^3)/((1-x^2)*(1-x^4)) ).list()
A124072_list(60) # G. C. Greubel, Sep 17 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 26 2007
EXTENSIONS
Partially edited by R. J. Mathar, Jul 07 2008
STATUS
approved