OFFSET
0,4
COMMENTS
A129819 and its repeated differences are
0.0.1..1..3..4..7...8..12..14.19..21.27....
..0.1..0..2..1..3...1...4...2..5...2..6....
....1.-1..2.-1..2..-2...3..-2..3..-3..4....
......-2..3.-3..3..-4...5..-5..5..-6..7....
..........5.-6..6..-7...9.-10.10.-11.13...
...........-11.12.-13..16.-19.20.-21.24.-27
...............23.-25..29.-35.39.-41.45.-51
The left edge is A130668.
I discovered the array 1 1 -2 1 -3 2 in studying the singular points of planar polynomial differential systems (inspired by the reference).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Paul Curtz, Stabilite locale des systemes quadratiques, Ann. sc. Ecole Norm. Sup. vol 13 no 3 (1980) pp 293-302.
Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,-1).
FORMULA
a(2n) = A004526(n).
a(2n+1) = A000027(n+1) .
G.f.: x*(1+x^2+x^3)/((1-x)^2*(1+x)^2*(1+x^2)). - R. J. Mathar, Feb 25 2009
From G. C. Greubel, Sep 17 2024: (Start)
a(n) = (1/8)*(3*n + 1 - (-1)^n*(n + 3) + i^n*(1 + (-1)^n)).
E.g.f.: (1/4)*( cos(x) - (1-2*x)*cosh(x) + (2+x)*sinh(x) ). (End)
MATHEMATICA
a[n_?OddQ] := (n+1)/2; a[n_?EvenQ] := Floor[n^2/16] - Floor[(n-2)^2/16]; Table[a[n], {n, 0, 51}] (* Jean-François Alcover, Aug 13 2012 *)
LinearRecurrence[{0, 1, 0, 1, 0, -1}, {0, 1, 0, 2, 1, 3}, 61] (* G. C. Greubel, Sep 17 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 61);
[0] cat Coefficients(R!( x*(1+x^2+x^3)/((1-x^2)*(1-x^4)) )); // G. C. Greubel, Sep 17 2024
(SageMath)
def A124072_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+x^2+x^3)/((1-x^2)*(1-x^4)) ).list()
A124072_list(60) # G. C. Greubel, Sep 17 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 26 2007
EXTENSIONS
Partially edited by R. J. Mathar, Jul 07 2008
STATUS
approved