login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124073
Number of permutations of n distinct letters (ABCD...) each of which appears 4 times with one fixed point.
0
0, 0, 1824, 3662976, 18743463360, 206032439164800, 4316868116405748960, 157846181105000772889344, 9416135162778291726755147136, 869099332136838873667455070091520, 118924204222864960529120670496333629600, 23292190275693669075772234927951426886017920
OFFSET
1,3
FORMULA
a(n) = A059060(n, 1). - Joerg Arndt, Nov 08 2020
EXAMPLE
A059060 as a triangle:
1
0, "0", 0, 0, 1
1, "0", 16, 0, 36, 0, 16, 0, 1
346, "1824", 4536, 7136, 7947, 6336, 3936, 1728, 684, 128, 48, 0, 1
748521, "3662976", 8607744, 12880512, 13731616, 11042688, 6928704, 3458432, 1395126, 453888, 122016, 25344, 4824, 512, 96, 0, 1
3993445276, "18743463360", 42506546320, 61907282240, 64917874125, 52087325696, 33176621920, 17181584640, 7352761180, 2628808000, 790912656, 201062080, 43284010, 7873920, 1216000, 154496, 17640, 1280, 160, 0, 1
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k);
R := (x, n, k)->p(x, k)^n;
f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k);
# copied from A059060
seq(coeff(f(t, n, 4), t, 1)/4!^n, n=1..12);
CROSSREFS
Cf. A059060.
Sequence in context: A234222 A233813 A249536 * A259950 A264215 A167266
KEYWORD
nonn,uned
AUTHOR
Zerinvary Lajos, Nov 05 2006
EXTENSIONS
Offset corrected by Joerg Arndt, Nov 08 2020
STATUS
approved