The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124073 Number of permutations of n distinct letters (ABCD...) each of which appears 4 times with one fixed point. 0
 0, 0, 1824, 3662976, 18743463360, 206032439164800, 4316868116405748960, 157846181105000772889344, 9416135162778291726755147136, 869099332136838873667455070091520, 118924204222864960529120670496333629600, 23292190275693669075772234927951426886017920 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS FORMULA a(n) = A059060(n, 1). - Joerg Arndt, Nov 08 2020 EXAMPLE A059060 as a triangle: 1 0, "0", 0, 0, 1 1, "0", 16, 0, 36, 0, 16, 0, 1 346, "1824", 4536, 7136, 7947, 6336, 3936, 1728, 684, 128, 48, 0, 1 748521, "3662976", 8607744, 12880512, 13731616, 11042688, 6928704, 3458432, 1395126, 453888, 122016, 25344, 4824, 512, 96, 0, 1 3993445276, "18743463360", 42506546320, 61907282240, 64917874125, 52087325696, 33176621920, 17181584640, 7352761180, 2628808000, 790912656, 201062080, 43284010, 7873920, 1216000, 154496, 17640, 1280, 160, 0, 1 MAPLE p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); # copied from A059060 seq(coeff(f(t, n, 4), t, 1)/4!^n, n=1..12); CROSSREFS Cf. A059060. Sequence in context: A234222 A233813 A249536 * A259950 A264215 A167266 Adjacent sequences:  A124070 A124071 A124072 * A124074 A124075 A124076 KEYWORD nonn,uned AUTHOR Zerinvary Lajos, Nov 05 2006 EXTENSIONS Offset corrected by Joerg Arndt, Nov 08 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 20:42 EDT 2021. Contains 347617 sequences. (Running on oeis4.)