|
|
A124075
|
|
a(n) = 2^(3^(4^...^n)...).
|
|
2
|
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
The next term is too large to include.
|
|
REFERENCES
|
David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
|
|
LINKS
|
Table of n, a(n) for n=2..4.
David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
|
|
EXAMPLE
|
a(4) = 2^(3^4) = 2417851639229258349412352.
|
|
MATHEMATICA
|
a[n_] := Fold[#2^#1&, n, Range[2, n-1] // Reverse];
Table[a[n], {n, 2, 4}] (* Jean-François Alcover, Oct 10 2018 *)
|
|
CROSSREFS
|
Cf. A014221, A049384, A121263, A121265, A121295, A121296.
Sequence in context: A012672 A024340 A012667 * A260548 A019315 A127558
Adjacent sequences: A124072 A124073 A124074 * A124076 A124077 A124078
|
|
KEYWORD
|
nonn,bref
|
|
AUTHOR
|
David Applegate and N. J. A. Sloane, Nov 08 2006
|
|
STATUS
|
approved
|
|
|
|