The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121265 Descending dungeons: a(10)=10; for n>10, a(n) = a(n-1) read as if it were written in base n. 14
 10, 11, 13, 16, 20, 30, 48, 76, 132, 420, 1640, 11991, 249459, 14103793, 5358891675, 19563802363305, 3359230167951561129, 181335944930584275675841374, 54416647690014492928933662292768871352, 6605721238793689879501639879905020611382966457124120828, 360539645288616164606228883801608423987740093330992456820074646988075733781927268 (list; graph; refs; listen; history; text; internal format)
 OFFSET 10,1 COMMENTS Using N_b to denote "N read in base b", the sequence is given by ......10....10.....10.....10.......etc. ..............11.....11.....11......... .......................12.....12....... ................................13..... where the subscripts are evaluated from the top downwards. More precisely, "N_b" means "Take decimal expansion of N and evaluate it as if it were a base-b expansion". A "dungeon" of numbers. REFERENCES David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402. LINKS N. J. A. Sloane, Table of n, a(n) for n = 10..35 David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007. David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467. Brady Haran and Neil Sloane, Dungeon Numbers, Numberphile video (2020). (extra) FORMULA If a, b >= 10, then a_b is roughly 10^(log(a)log(b)) (all logs are base 10 and "roughly" means it is an upper bound and using floor(log()) gives a lower bound). Equivalently, there exists c > 0 such that for all a, b >= 10, 10^(c log(a)log(b)) <= a_b <= 10^(log(a)log(b)). Thus a_n is roughly 10^product(log(9+i),i=1..n), or equivalently, a_n = 10^10^(n loglog n + O(n)). - David Applegate and N. J. A. Sloane, Aug 25 2006 EXAMPLE From Jianing Song, May 22 2021: (Start) a(10) = 10; a(11) = 10_11 = 11; a(12) = 11_12 = 13; a(13) = 13_13 = 16; a(14) = 16_14 = 20; a(15) = 20_15 = 30; a(16) = 30_16 = 48; ... (End) MAPLE M:=35; a:=list(10..M): a[10]:=10: lprint(10, a[10]); for n from 11 to M do t1:=convert(a[n-1], base, 10); a[n]:=add(t1[i]*n^(i-1), i=1..nops(t1)); lprint(n, a[n]); od: MATHEMATICA nxt[{n_, a_}]:={n+1, FromDigits[IntegerDigits[a], n+1]}; Transpose[ NestList[ nxt, {10, 10}, 20]][[2]] (* Harvey P. Dale, Jul 13 2014 *) PROG (PARI) a(n) = {my(x=10); for (b=11, n, x = fromdigits(digits(x, 10), b); ); x; } \\ Michel Marcus, May 26 2019 CROSSREFS Cf. A121263, A121295, A121296, A127744, A122734. Sequence in context: A121263 A121295 A121296 * A045986 A216836 A188165 Adjacent sequences:  A121262 A121263 A121264 * A121266 A121267 A121268 KEYWORD nonn,base,nice AUTHOR N. J. A. Sloane, Aug 23 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 18:33 EDT 2021. Contains 345049 sequences. (Running on oeis4.)