login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216836
Numbers n such that sum of decimal digits of n divides phi(n).
1
1, 10, 11, 13, 17, 20, 21, 27, 35, 39, 40, 41, 42, 43, 50, 54, 55, 57, 63, 80, 81, 82, 84, 86, 92, 93, 97, 100, 101, 105, 108, 110, 111, 112, 114, 116, 117, 122, 126, 129, 130, 131, 135, 142, 143, 147
OFFSET
1,2
COMMENTS
Sometimes referred to as balanced numbers.
The sequence is infinite because for k>= 1, phi(10^k) = 4*10^(k-1) and digitsum (10^k) = 1. - Marius A. Burtea, Dec 20 2018
If n is in the sequence, then so is 10*n. - Robert Israel, Dec 20 2018
REFERENCES
James J. Tattersall, Elementary Number Theory in Nine Chapters, 2nd ed., Cambridge University Press, 2005, page 193, exercise 15.
LINKS
Marius A. Burtea and Muniru A Asiru, Table of n, a(n) for n = 1..10000 (first 3028 terms from Marius A. Burtea)
EXAMPLE
39 is in the sequence since its sum of digits (12) divides phi(39) = 24.
MAPLE
select(n -> numtheory:-phi(n) mod convert(convert(n, base, 10), `+`) = 0, [$1..1000]); # Robert Israel, Dec 20 2018
MATHEMATICA
Select[Range[1000], Mod[EulerPhi[#], Total @ IntegerDigits[#]] == 0 &] (* Giovanni Resta, Mar 16 2013 *)
PROG
(Magma) [n: n in [1..1000] | IsIntegral((EulerPhi(n))/&+Intseq(n))]; // Marius A. Burtea, Dec 20 2018
(GAP) nmax:=150;;
S:=List(List([1..nmax], n->ListOfDigits(n)), Sum);; P:=List([1..nmax], n->Phi(n));;
a:=Filtered([1..nmax], i->P[i] mod S[i]=0); # Muniru A Asiru, Dec 20 2018
CROSSREFS
Sequence in context: A121296 A121265 A045986 * A188165 A125588 A253205
KEYWORD
nonn,base,easy
AUTHOR
Jayanta Basu, Mar 16 2013
STATUS
approved