login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216837
Number of permutations p of {1,...,n} such that at most one element of {p(1),...,p(i-1)} is between p(i) and p(i+1) for all i from 1 to n-1.
14
1, 1, 2, 6, 20, 72, 268, 1020, 3936, 15332, 60112, 236780, 935848, 3708236, 14721912, 58533264, 232991656, 928261480, 3700935760, 14763921580, 58924038816, 235258847064, 939576469152, 3753419774180, 14997257109992, 59933657096280, 239547378220840
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * 4^n, where c = 0.052940679853652794231561081876002147090052503777... - Vaclav Kotesovec, Feb 23 2014
a(n) = Sum_{k=0..n-1} A356692(n-1,k) for n >= 1. - Alois P. Heinz, Aug 28 2022
EXAMPLE
a(4) = 20 = 4! - 4, because 4 permutations of {1,...,4} do not satisfy the condition: 2314, 2341, 3214, 3241.
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(sort([o-j, u+j-1])[]), j=1..min(2, o))+
add(b(sort([u-j, o+j-1])[]), j=1..min(2, u)))
end:
a:= n-> `if`(n=0, 1, add(b(sort([j-1, n-j])[]), j=1..n)):
seq(a(n), n=0..35);
MATHEMATICA
b[u_, o_] := b[u, o] = If[u+o == 0, 1, Sum[b[Sequence @@ Sort[{o-j, u+j-1}]], {j, 1, Min[2, o]}] + Sum[b[Sequence @@ Sort[{u-j, o+j-1}]], {j, 1, Min[2, u]}]]; a[n_] := If[n == 0, 1, Sum[b[Sequence @@ Sort[{j-1, n-j}]], {j, 1, n}]]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Feb 05 2015, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 03 2013
STATUS
approved