login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174707
The number of permutations p of {1,...,n} such that |p(i)-p(i+1)| is in {3,4,5} for all i from 1 to n-1.
13
1, 0, 0, 0, 0, 2, 28, 144, 292, 272, 160, 272, 844, 3888, 15830, 49080, 113468, 208224, 352112, 662810, 1497286, 3853054, 10238142, 25892602, 60223752, 130042700, 271136524, 572265830, 1258121046, 2878870324, 6714840216, 15583281118, 35434903508, 78777769972, 172664047056
OFFSET
1,6
COMMENTS
For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {3,4,5}.
LINKS
EXAMPLE
For n = 6 the a(6) = 2 permutations are (3,6,2,5,1,4), (4,1,5,2,6,3).
MAPLE
f:= proc(m, M, n) option remember; local i, l, p, cnt; l:= array([i$i=1..n]); cnt:=0; p:= proc(t) local d, j, h; if t=n then d:= `if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then cnt:= cnt+1 fi else for j from t to n do l[t], l[j]:= l[j], l[t]; d:= `if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then p(t+1) fi od; h:= l[t]; for j from t to n-1 do l[j]:= l[j+1] od; l[n]:= h fi end; p(1); cnt end: a:= n-> f(3, 5, n); seq(a(n), n=1..14); # Alois P. Heinz, Mar 27 2010
MATHEMATICA
f[m_, M_, n_] := f[m, M, n] = Module[{i, l, p, cnt}, Do[l[i] = i, {i, 1, n}]; cnt = 0; p[t_] := Module[{d, j, h}, If[t == n, d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, cnt = cnt+1], For[j = t, j <= n, j++, {l[t], l[j]} = {l[j], l[t]}; d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, p[t+1]]]; h = l[t]; For[j = t, j <= n-1, j++, l[j] = l[j+1]]; l[n] = h]]; p[1]; cnt]; a[n_] := f[3, 5, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 14}] (* Jean-François Alcover, Jun 01 2015, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
W. Edwin Clark, Mar 27 2010
EXTENSIONS
Edited by Alois P. Heinz, Nov 27 2010
a(26)-a(35) from Andrew Howroyd, Apr 05 2016
STATUS
approved