login
A216834
Number of weak snarks on 2n nodes.
0
0, 0, 0, 0, 1, 0, 0, 0, 2, 6, 31, 155, 1297, 12517, 139854, 1764950, 25286953, 404899916
OFFSET
1,9
COMMENTS
Multiple definitions of snarks exist which vary in strength. Here snarks are cyclically 4-edge connected cubic graphs with chromatic index 4. These are sometimes called weak snarks. Some stronger definitions require snarks to have girth >= 5 or to be cyclically 5-edge connected.
LINKS
G. Brinkmann, J. Goedgebeur, J. Hagglund, and K. Markstrom, Generation and properties of Snarks, arxiv 1206.6690 [math.CO], 2012-2013.
J. Goedgebeur, E. Máčajová and M. Škoviera, Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44, arXiv:1712.07867 [math.CO], 2017-2019.
House of Graphs, Snarks
Eric Weisstein's World of Mathematics, Weak Snark
CROSSREFS
Cf. A130315.
Sequence in context: A232171 A231816 A058028 * A287592 A054141 A007710
KEYWORD
nonn,hard,more
AUTHOR
Jan Goedgebeur, Sep 19 2012
EXTENSIONS
a(18) added by Jan Goedgebeur, May 31 2018
STATUS
approved