login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216839
E.g.f.: Sum_{n>=0} log(1 + x*exp(n*x))^n / n!.
3
1, 1, 2, 9, 64, 515, 6126, 87332, 1408352, 28357821, 656029450, 16616305354, 486491747952, 16101080888763, 572203757798414, 22348109637703800, 973262507935361632, 45353465796372720729, 2238286744709428606866, 120361307277708751011502
OFFSET
0,3
COMMENTS
Note that a(32)-a(42), a(57)-a(69), ... are negative, see b-file. - Vaclav Kotesovec, Nov 05 2014
LINKS
FORMULA
E.g.f.: Sum_{n>=0} binomial(exp(n*x),n) * x^n.
E.g.f.: Sum_{n>=0} [Product_{k=0..n-1} (exp(n*x) - k)] * x^n/n!.
E.g.f.: Sum_{n>=0} x^n * Sum_{k=0..n} Stirling1(n,k) * exp(n*k*x) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 515*x^5/5! +...
where the g.f. satisfies the identities:
A(x) = 1 + log(1+x*exp(x)) + log(1+x*exp(2*x))^2/2! + log(1+x*exp(3*x))^3/3! + log(1+x*exp(4*x))^4/4! + log(1+x*exp(5*x))^5/5! +...
A(x) = 1 + binomial(exp(x),1)*x + binomial(exp(2*x),2)*x^2 + binomial(exp(3*x),3)*x^3 + binomial(exp(4*x),4)*x^4 + binomial(exp(5*x),5)*x^5 +...
A(x) = 1 + exp(x)*x + exp(2*x)*(exp(2*x)-1)*x^2/2! + exp(3*x)*(exp(3*x)-1)*(exp(3*x)-2)*x^3/3! + exp(4*x)*(exp(4*x)-1)*(exp(4*x)-2)*(exp(4*x)-3)*x^4/4! +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, log(1+x*exp(m*x+x*O(x^n)))^m/m!), n)}
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, binomial(exp(m*x+x*O(x^n)), m)*x^m), n)}
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=0, m-1, (exp(m*x +x*O(x^n)) - k)) * x^m/m!), n)}
for(n=0, 31, print1(a(n), ", "))
(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=local(A=1+x); A=sum(m=0, n, sum(k=0, m, Stirling1(m, k)*exp(m*k*x+x*O(x^n)))*x^m/m!); n!*polcoeff(A, n)}
CROSSREFS
Cf. A219118.
Sequence in context: A076944 A074181 A052513 * A024720 A289717 A094100
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 19 2012
STATUS
approved