login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219118
E.g.f.: Sum_{n>=0} log(1 + x*exp(2*n*x))^n / n!.
1
1, 1, 4, 24, 296, 4280, 79032, 1978368, 57803776, 1949421888, 78945675200, 3678493774560, 190462000632576, 11112878148649472, 730288018660087552, 52727783838765181440, 4148774572438335014912, 358041540338404096024576, 33700760914469383117799424
OFFSET
0,3
FORMULA
E.g.f. satisfies the identities:
(1) Sum_{n>=0} binomial(exp(2*n*x),n) * x^n.
(2) Sum_{n>=0} [Product_{k=0..n-1} (exp(2*n*x) - k)] * x^n/n!.
(3) Sum_{n>=0} x^n * Sum_{k=0..n} Stirling1(n,k) * exp(2*n*k*x) / n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 24*x^3/3! + 296*x^4/4! + 4280*x^5/5! +...
where the e.g.f. equals the series:
(0) A(x) = 1 + log(1+x*exp(2*x)) + log(1+x*exp(4*x))^2/2! + log(1+x*exp(6*x))^3/3! + log(1+x*exp(8*x))^4/4! + log(1+x*exp(10*x))^5/5! +...
(1) A(x) = 1 + binomial(exp(2*x),1)*x + binomial(exp(4*x),2)*x^2 + binomial(exp(6*x),3)*x^3 + binomial(exp(8*x),4)*x^4 + binomial(exp(10*x),5)*x^5 +...
(2) A(x) = 1 + exp(2*x)*x + exp(4*x)*(exp(4*x)-1)*x^2/2! + exp(6*x)*(exp(6*x)-1)*(exp(6*x)-2)*x^3/3! + exp(8*x)*(exp(8*x)-1)*(exp(8*x)-2)*(exp(8*x)-3)*x^4/4! +...
PROG
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, log(1+x*exp(2*m*x+x*O(x^n)))^m/m!), n)}
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, binomial(exp(2*m*x+x*O(x^n)), m)*x^m), n)}
(PARI) {a(n)=n!*polcoeff(sum(m=0, n, prod(k=0, m-1, (exp(2*m*x +x*O(x^n)) - k)) * x^m/m!), n)}
(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{a(n)=local(A=1+x); A=sum(m=0, n, sum(k=0, m, Stirling1(m, k)*exp(2*m*k*x+x*O(x^n)))*x^m/m!); n!*polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
Cf. A216839.
Sequence in context: A009104 A255440 A052727 * A005756 A206239 A374386
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 12 2012
STATUS
approved