login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052727
A simple context-free grammar in a labeled universe.
1
0, 1, 4, 24, 288, 4800, 103680, 2741760, 85800960, 3100446720, 127037030400, 5819550105600, 294727768473600, 16350861400473600, 986127353590579200, 64238655955009536000, 4495021381191204864000, 336249161369543245824000
OFFSET
0,3
FORMULA
E.g.f.: 1/2-1/2*(1-4*x-4*x^2)^(1/2)
Recurrence: {a(1)=1, a(2)=4, (-4*n^2+4)*a(n) +(-4*n-2)*a(n+1) +a(n+2) =0.
a(n) ~ sqrt(2-sqrt(2))* ((1+sqrt(2))/exp(1))^n * (2*n)^(n-1). - Vaclav Kotesovec, Sep 30 2013
a(n) = n!*A025227(n). - R. J. Mathar, Oct 18 2013
MAPLE
spec := [S, {B=Prod(S, S), S=Union(B, Z, C), C=Prod(Z, Z)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[1/2-1/2*(1-4*x-4*x^2)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
CROSSREFS
Sequence in context: A101228 A009104 A255440 * A219118 A005756 A206239
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved