login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A simple context-free grammar in a labeled universe.
1

%I #14 Apr 18 2017 07:04:03

%S 0,1,4,24,288,4800,103680,2741760,85800960,3100446720,127037030400,

%T 5819550105600,294727768473600,16350861400473600,986127353590579200,

%U 64238655955009536000,4495021381191204864000,336249161369543245824000

%N A simple context-free grammar in a labeled universe.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=683">Encyclopedia of Combinatorial Structures 683</a>

%F E.g.f.: 1/2-1/2*(1-4*x-4*x^2)^(1/2)

%F Recurrence: {a(1)=1, a(2)=4, (-4*n^2+4)*a(n) +(-4*n-2)*a(n+1) +a(n+2) =0.

%F a(n) ~ sqrt(2-sqrt(2))* ((1+sqrt(2))/exp(1))^n * (2*n)^(n-1). - _Vaclav Kotesovec_, Sep 30 2013

%F a(n) = n!*A025227(n). - _R. J. Mathar_, Oct 18 2013

%p spec := [S,{B=Prod(S,S),S=Union(B,Z,C),C=Prod(Z,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t CoefficientList[Series[1/2-1/2*(1-4*x-4*x^2)^(1/2), {x, 0, 20}], x]* Range[0, 20]! (* _Vaclav Kotesovec_, Sep 30 2013 *)

%K easy,nonn

%O 0,3

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000