login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219120
Triangle, read by rows, where T(n,k) is defined for n>=1, k=1..2*n-1, by a formula analogous to the second-order Eulerian triangle A008517.
2
1, 1, 1, -1, 1, 5, -2, -2, 1, 1, 15, 13, -19, 3, 3, -1, 1, 37, 128, -26, -74, 46, -4, -4, 1, 1, 83, 679, 755, -654, -68, 230, -90, 5, 5, -1, 1, 177, 2866, 9048, 2091, -5741, 1856, 498, -545, 155, -6, -6, 1, 1, 367, 10721, 67541, 98069, -24675, -35027, 22717, -3773, -1673, 1099, -245, 7, 7, -1, 1
OFFSET
1,6
COMMENTS
Compare to the o.g.f. of row n, E2(x,n), in the second-order Eulerian triangle A008517:
E2(x,n) = (1-x)^(2*n+1) * Sum_{k>=0} k^n * k^k * exp(-k*x) * x^k/k!.
LINKS
FORMULA
O.g.f. of row n, R(x,n), is given by:
R(x,n) = (1-x)^(2*n-1) * Sum_{k>=0} k^n *(k+1)^(k-1) * exp(-(k+1)*x) * x^k/k!.
Row sums = A001147, which is the odd double factorials.
Column 1 = A050488(n-1), where A050488(n) = 3*(2^n-1) - 2*n.
Central terms of rows = A219121.
EXAMPLE
Triangle begins:
1;
1, 1, -1;
1, 5, -2, -2, 1;
1, 15, 13, -19, 3, 3, -1;
1, 37, 128, -26, -74, 46, -4, -4, 1;
1, 83, 679, 755, -654, -68, 230, -90, 5, 5, -1;
1, 177, 2866, 9048, 2091, -5741, 1856, 498, -545, 155, -6, -6, 1;
1, 367, 10721, 67541, 98069, -24675, -35027, 22717, -3773, -1673, 1099, -245, 7, 7, -1;
1, 749, 37300, 409170, 1290116, 863168, -590008, -108832, 182806, -65858, 5824, 4228, -1988, 364, -8, -8, 1; ...
PROG
(PARI) {T(n, k)=polcoeff((1-x)^(2*n-1)*sum(j=0, 2*n, (j^n)*(j+1)^(j-1)*x^j/j!*exp(-(j+1)*x +O(x^k))), k)}
for(n=1, 10, for(k=1, 2*n-1, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Paul D. Hanna, Nov 12 2012
STATUS
approved