login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052513
Number of labeled trees of height at most 3.
2
0, 1, 2, 9, 64, 505, 4536, 46249, 526352, 6604497, 90466480, 1341571561, 21392282088, 364715915161, 6616327512536, 127187163197865, 2581443127409056, 55143025567270561, 1236226458392407008, 29012548251081127753, 711157579030313374520, 18169564436494014726441
OFFSET
0,3
LINKS
FORMULA
E.g.f.: x*exp(x*exp(x*exp(x))).
MAPLE
spec := [S, {S=Prod(Z, Set(T1)), T2=Prod(Z, Set(T3)), T3=Z, T1=Prod(Z, Set(T2))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
nn=20; a=x Exp[x]; b=x Exp[a]; Range[0, nn]! CoefficientList[Series[x Exp[b], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 20 2012 *)
PROG
(PARI)
N=33; x='x+O('x^N);
egf=x*exp(x*exp(x*exp(x)));
v=Vec(serlaplace(egf));
vector(#v+1, n, if(n==1, 0, v[n-1]))
/* Joerg Arndt, Sep 15 2012 */
(Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( x*Exp(x*Exp(x*Exp(x))) )); [0] cat [Factorial(n)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
(Sage) m = 20; T = taylor(x*exp(x*exp(x*exp(x))), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
CROSSREFS
Cf. A000552.
Cf. A052514 (height at most 4).
Sequence in context: A167913 A076944 A074181 * A216839 A024720 A289717
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved