login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052510
Number of labeled planar binary trees with 2n-1 elements (external nodes or internal nodes).
5
1, 6, 240, 25200, 5080320, 1676505600, 821966745600, 560992303872000, 508633022177280000, 591438478187741184000, 858123464716031754240000, 1519736656012092236759040000, 3226517823533365056503808000000, 8089341114715793820234547200000000
OFFSET
1,2
COMMENTS
Equals central terms of A174449. - G. C. Greubel, Nov 29 2021
LINKS
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 54 [Link is broken.]
FORMULA
E.g.f.: ((1/2)/x)*(1-sqrt(1-4*x^2)). [With interspersed zeros.]
Recurrence: b(1)=1, b(2)=0, b(n)=(4*n^3-12*n^2+8*n)*b(n-2)/(n+1) and a(n) = b(2*n-1).
a(n) = (2n-1)/n * ( (2(n-1))! / (n-1)! )^2. - Travis Kowalski (kowalski(AT)euclid.UCSD.Edu), Dec 15 2000
i*sin(arcsec(2*x)) = -1/(2*x) + x + 6*x^3/3! + 240*x^5/5! + 25200*x^7/7! + ...
a(n) = 2^(n-1) * A036770(n).
a(n) = (2*n-1)! * A000108(n-1). - Michail Stamatakis, Jan 24 2019
Sum_{n>=1} 1/a(n) = 1 + StruveL(0, 1/2)*Pi/8 + StruveL(1, 1/2)*Pi/4, where StruveL is the modified Struve function. - Amiram Eldar, Dec 04 2022
MAPLE
spec := [S, {S=Union(Z, Prod(Z, S, S))}, labeled]:
seq(combstruct[count](spec, size=2*n-1), n=1..14);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n,
4*(n-1)*(2*n-3)*(2*n-1)*a(n-1)/n)
end:
seq(a(n), n=1..22); # Alois P. Heinz, Dec 03 2019
MATHEMATICA
nn=20; f[x_]:=Sum[a[n]x^n/n!, {n, 0, nn}]; s=SolveAlways[0==Series[f[x]-x(1+f[x]^2), {x, 0, nn}], x]; Select[Flatten[Table[a[n], {n, 0, nn}]/.s], #>0&] (* Geoffrey Critzer, Mar 23 2013 *)
RecurrenceTable[{a[1]==1, n*a[n]==(4*(n-1)*(2*n-3)*(2*n-1))*a[n-1]}, a[n], {n, 1, 22}] (* Georg Fischer, Dec 03 2019 following Alois P. Heinz *)
a[n_]:= CatalanNumber[n-1] Gamma[2n]; Array[a, 14] (* Peter Luschny, Dec 03 2019 *)
PROG
(PARI) a=vector(28); print1(a[1]=1, ", "); forstep(k=1, #a-2, 2, print1(a[k+2]=4*a[k]*(k^3+3*k^2+2*k)/(k+3), ", ")) \\ Hugo Pfoertner, Dec 04 2019
(Sage) [factorial(2*n-1)*catalan_number(n-1) for n in (1..15)] # G. C. Greubel, Nov 29 2021
(Magma) [Factorial(2*n-1)*Catalan(n-1): n in [1..15]]; // G. C. Greubel, Nov 29 2021
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Edited by Georg Fischer, Dec 03 2019
STATUS
approved