login
A367776
a(n) = binomial(2*n, n - 1)*(2*n + 1)! / n!.
0
0, 6, 240, 12600, 846720, 69854400, 6849722880, 779155977600, 100919250432000, 14668613050291200, 2364758225077248000, 418798681661180620800, 80831074222717378560000, 16887920864389166592000000, 3797443866983262444748800000, 914438045469094536918528000000
OFFSET
0,2
FORMULA
a(n) = A271703(2*n + 1, n).
a(n) = binomial(2*n+1,n)*(2n)!/(n-1)! for n > 0. - Chai Wah Wu, Nov 30 2023
a(n) = n*A000108(n)*(2*n + 1)!/n!. - Detlef Meya, Dec 02 2023
MAPLE
seq(binomial(2*n, n - 1)*(2*n + 1)! / n!, n = 0..15);
MATHEMATICA
a[n_]:=n*CatalanNumber[n]*Gamma[2*n+2]/n!; Flatten[Table[a[n], {n, 0, 15}]] (* Detlef Meya, Dec 02 2023 *)
CROSSREFS
Cf. A000108 (Catalan), A271703.
Sequence in context: A002022 A378778 A065948 * A052510 A234633 A137892
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 29 2023
STATUS
approved