login
A367777
a(n) = |Stirling1(2*n + 1, n)|.
1
0, 2, 50, 1624, 67284, 3416930, 206070150, 14409322928, 1146901283528, 102417740732658, 10142299865511450, 1103230881185949736, 130770928736755873500, 16778377273555183648050, 2316762871029690607422990, 342563613932937660652700640, 54005406709047719373010498320
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^n] Pochhammer(x, 2*n + 1).
MAPLE
seq(abs(Stirling1(2*n + 1, n)), n = 0..16);
MATHEMATICA
A367777[n_]:=Abs[StirlingS1[2n+1, n]];
Array[A367777, 20, 0] (* Paolo Xausa, Nov 30 2023 *)
PROG
(PARI) a(n) = abs(stirling(2*n+1, n, 1)); \\ Michel Marcus, Nov 30 2023
CROSSREFS
Cf. A132393.
Sequence in context: A080263 A221241 A246071 * A088920 A278456 A231043
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 29 2023
STATUS
approved