login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233813
Number of (n+1) X (3+1) 0..5 arrays with every 2 X 2 subblock having the sum of the squares of all six edge and diagonal differences equal to 11.
1
1824, 10972, 61896, 403108, 2384304, 16476460, 100402408, 727727388, 4526565112, 34009964384, 214493580576, 1653020851316, 10519851847336, 82472356844020, 527892783810376, 4185126298632084, 26885993638734088, 214690431691380868
OFFSET
1,1
FORMULA
Empirical recurrence of order 78 (see link above).
Empirical recurrence verified (see link). - Robert Israel, Jul 30 2019
EXAMPLE
Some solutions for n=3
..1..2..1..0....3..4..3..2....3..4..3..4....2..0..2..0....1..1..2..1
..0..0..0..2....4..2..2..4....4..2..4..2....1..0..1..0....2..3..3..3
..1..2..1..0....4..3..4..3....2..3..2..3....0..2..2..2....2..4..5..4
..2..0..2..0....2..4..2..4....1..1..1..3....1..0..1..0....2..3..5..3
MAPLE
Rows:= [seq(seq(seq(seq([w, x, y, z], z=max(y-2, 0)..min(y+2, 5)), y=max(x-2, 0)..min(x+2, 5)), x=max(w-2, 0)..min(w+2, 5)), w=0..5)]:
nrows:= nops(Rows):
filter:= proc(x) local i, j; add(add((x[i]-x[j])^2, i=j+1..4), j=1..3)=11 end proc:
T:= Matrix(nrows, nrows, proc(i, j) local k; if andmap(filter, [seq([Rows[i][k], Rows[i][k+1], Rows[j][k], Rows[j][k+1]], k=1..3)]) then 1 else 0 fi end proc):
U[0]:= Vector(nrows, 1):
for j from 1 to 30 do U[j]:= T . U[j-1] od:
seq(add(U[n][i], i=1..nrows), n=1..30); # Robert Israel, Jul 30 2019
CROSSREFS
Column 3 of A233818.
Sequence in context: A179581 A230052 A234222 * A249536 A124073 A259950
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 16 2013
STATUS
approved