login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323523
Number of positive integer square matrices with entries summing to n and equal row and column sums.
3
1, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 12, 1, 7, 22, 9, 1, 64, 1, 34, 121, 11, 1, 525, 2, 13, 407, 2022, 1, 801, 1, 10163, 1036, 17, 6211, 41735, 1, 19, 2212, 285784, 1, 3822, 1, 381446, 2229142, 23, 1, 1189540, 2, 22069276, 7261, 2309410, 1, 20943183, 164176641
OFFSET
0,5
COMMENTS
Also the number of non-normal semi-magic squares with positive integer entries summing to n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200 (terms 0..59 from Chai Wah Wu)
FORMULA
a(p) = 1 and a(p^2) = 2 for p prime (see comment in A323349). - Chai Wah Wu, Jan 20 2019
a(n) = Sum_{d|n, d<=n/d} A257493(d, n/d-d) for n > 0. - Andrew Howroyd, Apr 10 2020
EXAMPLE
The a(12) = 12 matrices:
[12]
.
[1 5] [5 1] [2 4] [4 2] [3 3]
[5 1] [1 5] [4 2] [2 4] [3 3]
.
[1 1 2] [1 1 2] [1 2 1] [1 2 1] [2 1 1] [2 1 1]
[1 2 1] [2 1 1] [1 1 2] [2 1 1] [1 1 2] [1 2 1]
[2 1 1] [1 2 1] [2 1 1] [1 1 2] [1 2 1] [1 1 2]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnsqrs[n_]:=Union@@Permutations/@Select[Union@@(Tuples[Permutations/@#]&/@Map[primeMS, facs[n], {2}]), And[SameQ@@Length/@#, Length[#]==0||Length[#]==Length[First[#]]]&];
Table[Sum[Length[Select[ptnsqrs[Times@@Prime/@y], And[SameQ@@Total/@#, SameQ@@Total/@Transpose[#]]&]], {y, IntegerPartitions[n]}], {n, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 17 2019
EXTENSIONS
a(16)-a(55) from Chai Wah Wu, Jan 20 2019
STATUS
approved