login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055895
Inverse Moebius transform of powers of 2.
11
1, 2, 6, 10, 22, 34, 78, 130, 278, 522, 1062, 2050, 4190, 8194, 16518, 32810, 65814, 131074, 262734, 524290, 1049654, 2097290, 4196358, 8388610, 16781662, 33554466, 67117062, 134218250, 268451990, 536870914, 1073775726, 2147483650, 4295033110, 8589936650
OFFSET
0,2
COMMENTS
Row sums of A055894.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: 1 + Sum_{k>=1} 2^k*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
a(n) = Sum_{d divides n} 2^d. - Olivier Gérard, Jan 01 2012
a(n) = 2 * A034729(n) for n >= 1. - Joerg Arndt, Aug 14 2012
G.f.: 1 + Sum_{k>=1} 2*x^k/(1-2*x^k). - Joerg Arndt, Mar 28 2013
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 10*x^3 + 22*x^4 + 34*x^5 + 78*x^6 + 130*x^7 + ...
MATHEMATICA
Table[Plus @@ Map[Function[d, 2^d], Divisors[n]], {n, 0, 30}] (* Olivier Gérard, Jan 01 2012 *)
a[0]=1; a[n_] := DivisorSum[n, 2^#&]; Array[a, 40, 0] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) a(n)=if(n<1, 1, polcoeff(sum(k=1, n, 1/(1-2*x^k), x*O(x^n)), n))
(PARI) a(n)=if(n<1, 1, sumdiv(n, d, 2^d)); /* Joerg Arndt, Aug 14 2012 */
CROSSREFS
Cf. A034729, A113705 (binary), A339916.
Cf. A055894.
Sequence in context: A371283 A182000 A167512 * A125527 A376287 A200572
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 09 2000
STATUS
approved