login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360693
Number T(n,k) of sets of n words of length n over binary alphabet where the first letter occurs k times; triangle T(n,k), n>=0, n-signum(n)<=k<=n*(n-1)+signum(n), read by rows.
5
1, 1, 1, 2, 2, 2, 3, 10, 15, 15, 10, 3, 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4, 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, 27820, 19752, 11680, 5645, 2150, 600, 101, 5, 6, 226, 2490, 14745, 61770, 200529, 535674, 1211485, 2368200
OFFSET
0,4
COMMENTS
T(n,k) is defined for all n >= 0 and k >= 0. The triangle contains only the positive elements.
LINKS
FORMULA
T(n,k) = T(n,n^2-k).
EXAMPLE
T(2,3) = 2: {aa,ab}, {aa,ba}.
T(3,3) = 10: {aab,abb,bbb}, {aab,bab,bbb}, {aab,bba,bbb}, {aba,abb,bbb}, {aba,bab,bbb}, {aba,bba,bbb}, {abb,baa,bbb}, {abb,bab,bba}, {baa,bab,bbb}, {baa,bba,bbb}.
T(4,3) = 4: {abbb,babb,bbab,bbbb}, {abbb,babb,bbba,bbbb}, {abbb,bbab,bbba,bbbb}, {babb,bbab,bbba,bbbb}.
Triangle T(n,k) begins:
1;
1, 1;
. 2, 2, 2;
. . 3, 10, 15, 15, 10, 3;
. . . 4, 37, 108, 228, 336, 394, 336, 228, 108, 37, 4;
. . . . 5, 101, 600, 2150, 5645, 11680, 19752, 27820, 32935, 32935, ...;
...
MAPLE
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i), k), k=0..j))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=n-signum(n)..n*(n-1)+signum(n)))(g(n$3)):
seq(T(n), n=0..6);
MATHEMATICA
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i], k], {k, 0, j}]]]];
T[n_] := Table[Coefficient[#, x, i], {i, n - Sign[n], n(n - 1) + Sign[n]}]&[g[n, n, n]];
Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, May 26 2023, after Alois P. Heinz *)
CROSSREFS
Row sums give A014070.
Column sums give A360695.
Main diagonal T(n,n) gives A154323(n-1) for n>=1.
T(n,n-1) gives A000027(n) for n>=1.
T(2n,2n^2) gives A360702.
Cf. A000290, A057427, A220886 (similar triangle for multisets).
Sequence in context: A010583 A306343 A238188 * A051007 A240166 A346801
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Feb 16 2023
STATUS
approved