The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238188 a(n) = 4*a(n-4) + 6*a(n-8) + 4*a(n-12) + a(n-16) for n>15, with the sixteen initial values as shown. 1
 0, 0, 1, 1, 2, 2, 2, 3, 9, 11, 13, 15, 48, 57, 68, 81, 254, 302, 359, 427, 1342, 1596, 1898, 2257, 7093, 8435, 10031, 11929, 37488, 44581, 53016, 63047, 198132, 235620, 280201, 333217, 1047170, 1245302, 1480922, 1761123, 5534517, 6581687, 7826989, 9307911, 29251104, 34785621, 41367308 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS These four sequences: b(4n+4) = b(4n) + b(4n+1) + b(4n+2) + b(4n+3), b(4n+5) = 2*b(4n) + b(4n+1) + b(4n+2) + b(4n+3), b(4n+6) = 2*b(4n) + 2*b(4n+1) + b(4n+2) + b(4n+3), b(4n+7) = 2*b(4n) + 2*b(4n+1) + 2*b(4n+2) + b(4n+3), give the polynomial: x^4-4*x^3-6*x^2-4*x-1 with root 1 + 2^(1/4) + 2^(2/4) + 2^(3/4). More generally, see link the roots of the equation of the fourth degree. Equation: 8*x^4-t^4-2*(-z^4+4*t*y*z^2-4*t^2*x*z-2*t^2*y^2)-4*(x^2*(2*z^2+4*t*y)-4*x*y^2*z+y^4) = (-1)^(ceiling(n/2)-floor(n/2)), if x = a(4n), y = a(4n+1), z = a(4n+2), t = a(4n+3). LINKS Alexander Samokrutov, Table of n, a(n) for n = 0..91 Alexander Samokrutov, The roots of the equation of the fourth degree Index entries for linear recurrences with constant coefficients, signature (0,0,0,4,0,0,0,6,0,0,0,4,0,0,0,1). FORMULA G.f.: x^2*(x^2+x+1)*(x^3-x^2+1)*(x^8-x^6+2*x^4-2*x^2-1) / (x^16+4*x^12+6*x^8+4*x^4-1). - Colin Barker, May 02 2015 MATHEMATICA LinearRecurrence[{0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 1}, {0, 0, 1, 1, 2, 2, 2, 3, 9, 11, 13, 15, 48, 57, 68, 81}, 60] (* Vincenzo Librandi, May 15 2015 *) PROG (PARI) concat([0, 0], Vec(x^2*(x^2+x+1)*(x^3-x^2+1)*(x^8-x^6+2*x^4-2*x^2-1) / (x^16+4*x^12+6*x^8+4*x^4-1) + O(x^100))) \\ Colin Barker, May 02 2015 CROSSREFS Cf. A247344, A255983, A255985. Sequence in context: A119532 A010583 A306343 * A360693 A051007 A240166 Adjacent sequences: A238185 A238186 A238187 * A238189 A238190 A238191 KEYWORD nonn,easy AUTHOR Alexander Samokrutov, May 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 07:02 EDT 2024. Contains 372772 sequences. (Running on oeis4.)