login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060217
Number of orbits of length n under the full 14-shift (whose periodic points are counted by A001023).
2
14, 91, 910, 9555, 107562, 1254435, 15059070, 184468830, 2295671560, 28925411697, 368142288150, 4724492067295, 61054982558010, 793714765724595, 10371206370484778, 136122083520848880, 1793608631137129170, 23715491899442676060, 314542313628890231430, 4183412771249777343369
OFFSET
1,1
COMMENTS
Number of Lyndon words (aperiodic necklaces) with n beads of 14 colors. - Andrew Howroyd, Dec 10 2017
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
FORMULA
a(n) = (1/n)* Sum_{d|n} mu(d)*A001023(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 14*x^k))/k. - Ilya Gutkovskiy, May 19 2019
EXAMPLE
a(2)=91 since there are 196 points of period 2 in the full 14-shift and 14 fixed points, so there must be (196-14)/2 = 91 orbits of length 2.
MATHEMATICA
A060217[n_]:= DivisorSum[n, MoebiusMu[#]*14^(n/#) &]/n;
Table[A060217[n], {n, 40}] (* G. C. Greubel, Aug 01 2024 *)
PROG
(PARI) a001023(n) = 14^n;
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001023(n/d)); \\ Michel Marcus, Sep 11 2017
(Magma)
A060217:= func< n | (&+[MoebiusMu(d)*14^Floor(n/d): d in Divisors(n)])/n >;
[A060217(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
(SageMath)
def A060217(n): return sum(moebius(k)*14^(n//k) for k in (1..n) if (k).divides(n))/n
[A060217(n) for n in range(1, 41)] # G. C. Greubel, Aug 01 2024
CROSSREFS
Column 14 of A074650.
Cf. A001023.
Sequence in context: A010930 A220892 A022609 * A113776 A202901 A224328
KEYWORD
easy,nonn
AUTHOR
Thomas Ward, Mar 21 2001
EXTENSIONS
More terms from Michel Marcus, Sep 11 2017
STATUS
approved