login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of orbits of length n under the full 14-shift (whose periodic points are counted by A001023).
2

%I #25 Aug 01 2024 09:16:11

%S 14,91,910,9555,107562,1254435,15059070,184468830,2295671560,

%T 28925411697,368142288150,4724492067295,61054982558010,

%U 793714765724595,10371206370484778,136122083520848880,1793608631137129170,23715491899442676060,314542313628890231430,4183412771249777343369

%N Number of orbits of length n under the full 14-shift (whose periodic points are counted by A001023).

%C Number of Lyndon words (aperiodic necklaces) with n beads of 14 colors. - _Andrew Howroyd_, Dec 10 2017

%H G. C. Greubel, <a href="/A060217/b060217.txt">Table of n, a(n) for n = 1..870</a>

%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

%H Yash Puri and Thomas Ward, <a href="http://www.fq.math.ca/Scanned/39-5/puri.pdf">A dynamical property unique to the Lucas sequence</a>, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.

%H T. Ward, <a href="http://www.mth.uea.ac.uk/~h720/research/files/integersequences.html">Exactly realizable sequences</a>

%F a(n) = (1/n)* Sum_{d|n} mu(d)*A001023(n/d).

%F G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 14*x^k))/k. - _Ilya Gutkovskiy_, May 19 2019

%e a(2)=91 since there are 196 points of period 2 in the full 14-shift and 14 fixed points, so there must be (196-14)/2 = 91 orbits of length 2.

%t A060217[n_]:= DivisorSum[n, MoebiusMu[#]*14^(n/#) &]/n;

%t Table[A060217[n], {n,40}] (* _G. C. Greubel_, Aug 01 2024 *)

%o (PARI) a001023(n) = 14^n;

%o a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001023(n/d)); \\ _Michel Marcus_, Sep 11 2017

%o (Magma)

%o A060217:= func< n | (&+[MoebiusMu(d)*14^Floor(n/d): d in Divisors(n)])/n >;

%o [A060217(n): n in [1..40]]; // _G. C. Greubel_, Aug 01 2024

%o (SageMath)

%o def A060217(n): return sum(moebius(k)*14^(n//k) for k in (1..n) if (k).divides(n))/n

%o [A060217(n) for n in range(1,41)] # _G. C. Greubel_, Aug 01 2024

%Y Column 14 of A074650.

%Y Cf. A001023.

%K easy,nonn

%O 1,1

%A _Thomas Ward_, Mar 21 2001

%E More terms from _Michel Marcus_, Sep 11 2017