login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060219
Number of orbits of length n under the full 16-shift (whose periodic points are counted by A001025).
2
16, 120, 1360, 16320, 209712, 2795480, 38347920, 536862720, 7635496960, 109951057896, 1599289640400, 23456246655680, 346430740566960, 5146970983535160, 76861433640386288, 1152921504338411520, 17361641481138401520, 262353693488939386880, 3976729669784964390480
OFFSET
1,1
COMMENTS
Number of monic irreducible polynomials of degree n over GF(16). - Robert Israel, Jan 07 2015
Number of Lyndon words (aperiodic necklaces) with n beads of 16 colors. - Andrew Howroyd, Dec 10 2017
LINKS
Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
FORMULA
a(n) = (1/n)* Sum_{d|n} mu(d)*16^(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 16*x^k))/k. - Ilya Gutkovskiy, May 19 2019
EXAMPLE
a(2)=120 since there are 256 points of period 2 in the full 16-shift and 16 fixed points, so there must be (256-16)/2 = 120 orbits of length 2.
MAPLE
f:= (n, p) -> add(numtheory:-mobius(d)*p^(n/d), d=numtheory:-divisors(n))/n:
seq(f(n, 16), n=1..30); # Robert Israel, Jan 07 2015
MATHEMATICA
A060219[n_]:= DivisorSum[n, MoebiusMu[#]*16^(n/#) &]/n; Table[A060219[n], {n, 40}] (* G. C. Greubel, Aug 01 2024 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(d)*16^(n/d))/n; \\ Michel Marcus, Jan 07 2015
(Magma)A060219:= func< n | (&+[MoebiusMu(d)*16^Floor(n/d): d in Divisors(n)])/n >;
[A060219(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
(SageMath)
def A060219(n): return sum(moebius(k)*16^(n//k) for k in (1..n) if (k).divides(n))/n
[A060219(n) for n in range(1, 41)] # G. C. Greubel, Aug 01 2024
CROSSREFS
Column 16 of A074650.
Cf. A001025.
Sequence in context: A164542 A351383 A027049 * A185760 A301649 A014732
KEYWORD
easy,nonn
AUTHOR
Thomas Ward, Mar 21 2001
EXTENSIONS
Terms a(17) onward added by G. C. Greubel, Aug 01 2024
STATUS
approved