login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060218
Number of orbits of length n under the full 15-shift (whose periodic points are counted by A001024).
2
15, 105, 1120, 12600, 151872, 1897840, 24408480, 320355000, 4271484000, 57664963104, 786341441760, 10812193870800, 149707312950720, 2085208989609360, 29192926025339776, 410525522071875000, 5795654431511374080, 82105104444274758000, 1166756747396368729440, 16626283650369421872480
OFFSET
1,1
COMMENTS
Number of Lyndon words (aperiodic necklaces) with n beads of 15 colors. - Andrew Howroyd, Dec 10 2017
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Yash Puri and Thomas Ward, A dynamical property unique to the Lucas sequence, Fibonacci Quarterly, Volume 39, Number 5 (November 2001), pp. 398-402.
FORMULA
a(n) = (1/n)* Sum_{d|n} mu(d)*A001024(n/d).
G.f.: Sum_{k>=1} mu(k)*log(1/(1 - 15*x^k))/k. - Ilya Gutkovskiy, May 19 2019
EXAMPLE
a(2)=105 since there are 225 points of period 2 in the full 15-shift and 15 fixed points, so there must be (225-15)/2 = 105 orbits of length 2.
MAPLE
f:= n -> 1/n*add(numtheory:-mobius(d)*15^(n/d), d = numtheory:-divisors(n)):
map(f, [$1..30]); # Robert Israel, Oct 28 2018
MATHEMATICA
A060218[n_]:= DivisorSum[n, MoebiusMu[#]*15^(n/#) &]/n;
Table[A060218[n], {n, 40}] (* G. C. Greubel, Aug 01 2024 *)
PROG
(PARI) a001024(n) = 15^n;
a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001024(n/d)); \\ Michel Marcus, Sep 11 2017
(Magma)
A060218:= func< n | (&+[MoebiusMu(d)*15^Floor(n/d): d in Divisors(n)])/n >;
[A060218(n): n in [1..40]]; // G. C. Greubel, Aug 01 2024
(SageMath)
def A060218(n): return sum(moebius(k)*15^(n//k) for k in (1..n) if (k).divides(n))/n
[A060218(n) for n in range(1, 41)] # G. C. Greubel, Aug 01 2024
CROSSREFS
Column 15 of A074650.
Cf. A001024.
Sequence in context: A200852 A266503 A058085 * A226109 A264415 A319588
KEYWORD
easy,nonn,changed
AUTHOR
Thomas Ward, Mar 21 2001
EXTENSIONS
More terms from Michel Marcus, Sep 11 2017
STATUS
approved