login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A226109
Triangular numbers t such that t - 4, t - 2, t + 2, t + 4 are four primes.
1
15, 105, 1485, 18915, 666435, 2143485, 4174605, 10059855, 10440165, 28196295, 95295915, 124591005, 155064855, 171023265, 206258205, 298400235, 311737965, 347701635, 389470095, 459332895, 460424685, 498948255, 526517475, 537575655, 615496155, 645500415, 885763005, 963144105
OFFSET
1,1
COMMENTS
Subsequence of A129752.
Proper subsequence of A226196. - Alex Ratushnyak, May 30 2013
MATHEMATICA
Select[Accumulate[Range[0, 70]], Union[PrimeQ[{# - 4, # - 2, # + 2, # + 4}]] == {True} &] (* Alonso del Arte, May 27 2013 *)
PROG
(Java)
import java.math.BigInteger;
public class A226109 {
public static void main (String[] args) {
for (long n = 1; n < (1L << 31); n++) {
long p2 = n * (n + 1)/2 + 2, m2 = p2 - 4;
BigInteger b = BigInteger.valueOf(p2);
if (!b.isProbablePrime(80)) continue;
b = BigInteger.valueOf(m2);
if (!b.isProbablePrime(80)) continue;
b = BigInteger.valueOf(p2 + 2);
if (!b.isProbablePrime(80)) continue;
b = BigInteger.valueOf(m2 - 2);
if (!b.isProbablePrime(80)) continue;
System.out.printf("%d, ", p2 - 2);
}
}
}
(Magma) A000217:=func<m | m*(m+1) div 2>; [A000217(t): t in [0..10^5] | forall{A000217(t)+i: i in [-4, -2, 2, 4] | IsPrime(A000217(t)+i)}]; // Bruno Berselli, May 27 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 26 2013
STATUS
approved