login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226112
Composite squarefree numbers n such that the ratio (n + 1/3)/(p(i) + 1/3) is an integer, where p(i) are the prime factors of n.
3
133653, 1280533, 193638133, 514276565, 1421486733, 1567953933, 3857178453, 3973200933, 5411272533, 7694639213, 8021152533, 8469827669, 9820706133, 15832804533, 18238619373, 22356801133, 23037766613, 25136796813, 27315827733, 32434329685, 39817016633
OFFSET
1,1
COMMENTS
Also composite squarefree numbers n such that (3*p(i)+1) | (3*n+1).
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..67 (terms < 2*10^12)
EXAMPLE
The prime factors of 133653 are 3, 13, 23 and 149. We see that (133653 + 1/3)/(3 + 1/3) = 40096, (133653 + 1/3)/(13 + 1/3) = 10024, (133653 + 1/3)/(23 + 1/3) = 5728 and (133653 + 1/3)/(149 + 1/3) = 895. Hence 133653 is in the sequence.
The prime factors of 1127749 are 7, 31 and 5197. We see that
(1127749 + 1/3)/(7 + 1/3) = 153784, (1127749 + 1/3)/(31 + 1/3) = 35992 but (1127749 + 1/3)/(5197 + 1/3) = 422906/1949. Hence 1127749 is not in the sequence.
MAPLE
with(numtheory); A226112:=proc(i, j) local c, d, n, ok, p;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or not type((n+j)/(p[d][1]+j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A226112(10^9, 1/3);
KEYWORD
nonn,hard
AUTHOR
Paolo P. Lava, May 29 2013
EXTENSIONS
a(4)-a(21) from Giovanni Resta, Jun 02 2013
STATUS
approved