login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226113
Composite squarefree numbers n such that the ratio (n - 1/3)/(p(i) + 1/3) is an integer, where p(i) are the prime factors of n.
2
773227, 13596427, 26567147, 140247467, 525558107, 1390082027, 1847486667, 2514565387, 3699765755, 4060724267, 4520219947, 6185512667, 6480142667, 8328046827, 9951353867, 10268992067, 11720901387, 14149448387, 14913513067, 21926400427, 22367433387, 24260249387
OFFSET
1,1
COMMENTS
Also composite squarefree numbers n such that (3*p(i)+1) | (3*n-1).
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..77 (terms < 2*10^12)
EXAMPLE
The prime factors of 773227 are 7, 13, 29 and 293. We see that (773227 - 1/3)/(7 + 1/3) = 231968, (773227 - 1/3)/(13 + 1/3) = 57992, (773227 - 1/3)/(29 + 1/3) = 26360 and (773227 - 1/3)/(293 + 1/3) = 2636. Hence 773227 is in the sequence.
The prime factors of 1128387 are 3, 13 and 28933. We see that
(1128387 - 1/3)/(3 + 1/3) = 338516, (1128387 - 1/3)/(13 + 1/3) = 84629 but (1128387 - 1/3)/(28933 + 1/3) = 84629/2170. Hence 1128387 is not in the sequence.
MAPLE
with(numtheory); A226113:=proc(i, j) local c, d, n, ok, p;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or not type((n-j)/(p[d][1]+j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A226113(10^9, 1/3);
KEYWORD
nonn,hard
AUTHOR
Paolo P. Lava, May 29 2013
EXTENSIONS
a(5)-a(22) from Giovanni Resta, Jun 02 2013
STATUS
approved