login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266503
Number of symmetric difference-closed 4-sets consisting of sets consisting of an even number of pairwise disjoint 2-subsets of {1,2,...,n}.
1
0, 0, 0, 0, 0, 15, 105, 735, 4095, 26775, 162855, 1105335, 7187895, 51126075, 356831475, 2676468795, 19890931515, 156769986555, 1232704469115, 10178240218875, 84190426730235, 725667326178795
OFFSET
1,6
COMMENTS
A set of this form forms a group (isomorphic to the Klein four-group) under the symmetric difference operation. Such sets may be regarded in a natural way as Klein four-subgroups of the alternating group A_n.
LINKS
John Campbell, A class of symmetric difference-closed sets related to commuting involutions, Discrete Mathematics & Theoretical Computer Science, Vol 19 no. 1, 2017.
FORMULA
a(n) = n!*sum(sum(sum((2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(delta(i, j)+delta(i, k)+1)!), k=max(i, 2*i+2*j-[n/2])..min(2*j, [1/4*(4*i+4*j-1)])), j=1..i), i=1..[n/2]).
From Vaclav Kotesovec, Apr 10 2016: (Start)
Recurrence: (n-6)*(n-4)*(n-2)*a(n) = (2*n - 7)*(2*n^2 - 14*n + 15)*a(n-1) + 3*(n-7)*(n-1)*(n^2 - 7*n + 11)*a(n-2) - (n-2)*(n-1)*(9*n^2 - 85*n + 189)*a(n-3) + (n-3)*(n-2)*(n-1)*(n^2 - n - 22)*a(n-4) - 2*(n-4)^2*(n-3)*(n-2)*(n-1)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n - 19)*a(n-6) + 3*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
E.g.f.: exp(x)/3 - exp(-x*(x-2)/2)/8 - exp(x*(x+2)/2)/4 + exp(x*(3*x+2)/2)/24.
a(n) ~ 2^(-7/2) * 3^(n/2 - 1) * exp(sqrt(n/3) - n/2 - 1/12) * n^(n/2).
(End)
a(n) = 1/3 + (-1)^n*A001464(n)/8 - A000085(n)/4 + A115327(n)/24. - Vaclav Kotesovec, May 28 2016
EXAMPLE
For example, there are a(n) = 15 sets of this form in the case whereby n=6:
{{{12}, {34}}, {{34}, {56}}, {{12}, {56}}, {}}
{{{12}, {35}}, {{35}, {46}}, {{12}, {46}}, {}}
{{{12}, {36}}, {{36}, {45}}, {{12}, {45}}, {}}
{{{13}, {24}}, {{24}, {56}}, {{13}, {56}}, {}}
{{{13}, {25}}, {{25}, {46}}, {{13}, {46}}, {}}
{{{13}, {26}}, {{26}, {45}}, {{13}, {45}}, {}}
{{{14}, {23}}, {{23}, {56}}, {{14}, {56}}, {}}
{{{14}, {25}}, {{25}, {36}}, {{14}, {36}}, {}}
{{{14}, {26}}, {{26}, {35}}, {{14}, {35}}, {}}
{{{15}, {23}}, {{23}, {46}}, {{15}, {46}}, {}}
{{{15}, {24}}, {{24}, {36}}, {{15}, {36}}, {}}
{{{15}, {26}}, {{26}, {34}}, {{15}, {34}}, {}}
{{{16}, {23}}, {{23}, {45}}, {{16}, {45}}, {}}
{{{16}, {24}}, {{24}, {35}}, {{16}, {35}}, {}}
{{{16}, {25}}, {{25}, {34}}, {{16}, {34}}, {}}
MATHEMATICA
a[n_] := n!*Sum[Sum[Sum[(2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(KroneckerDelta[i, j]+KroneckerDelta[i, k]+1)!), {k, Max[i, 2*i+2*j-Floor[n/2]], Min[2*j, Floor[1/4*(4*i+4*j-1)]]}], {j, 1, i}], {i, 1, Floor[n/2]}] ; Print[Table[a[n], {n, 1, 22}]] ;
Rest[CoefficientList[Series[E^x/3 - E^(-x*(x-2)/2)/8 - E^(x*(x+2)/2)/4 + E^(x*(3*x+2)/2)/24, {x, 0, 30}], x] * Range[0, 30]!] (* Vaclav Kotesovec, Apr 10 2016 *)
CROSSREFS
Cf. A267840.
Sequence in context: A055848 A202493 A200852 * A058085 A060218 A226109
KEYWORD
nonn,easy
AUTHOR
John M. Campbell, Jan 24 2016
STATUS
approved