login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of symmetric difference-closed 4-sets consisting of sets consisting of an even number of pairwise disjoint 2-subsets of {1,2,...,n}.
1

%I #39 Jun 17 2019 02:01:27

%S 0,0,0,0,0,15,105,735,4095,26775,162855,1105335,7187895,51126075,

%T 356831475,2676468795,19890931515,156769986555,1232704469115,

%U 10178240218875,84190426730235,725667326178795

%N Number of symmetric difference-closed 4-sets consisting of sets consisting of an even number of pairwise disjoint 2-subsets of {1,2,...,n}.

%C A set of this form forms a group (isomorphic to the Klein four-group) under the symmetric difference operation. Such sets may be regarded in a natural way as Klein four-subgroups of the alternating group A_n.

%H John Campbell, <a href="https://dmtcs.episciences.org/3210">A class of symmetric difference-closed sets related to commuting involutions</a>, Discrete Mathematics & Theoretical Computer Science, Vol 19 no. 1, 2017.

%F a(n) = n!*sum(sum(sum((2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(delta(i, j)+delta(i, k)+1)!), k=max(i, 2*i+2*j-[n/2])..min(2*j, [1/4*(4*i+4*j-1)])), j=1..i), i=1..[n/2]).

%F From _Vaclav Kotesovec_, Apr 10 2016: (Start)

%F Recurrence: (n-6)*(n-4)*(n-2)*a(n) = (2*n - 7)*(2*n^2 - 14*n + 15)*a(n-1) + 3*(n-7)*(n-1)*(n^2 - 7*n + 11)*a(n-2) - (n-2)*(n-1)*(9*n^2 - 85*n + 189)*a(n-3) + (n-3)*(n-2)*(n-1)*(n^2 - n - 22)*a(n-4) - 2*(n-4)^2*(n-3)*(n-2)*(n-1)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n - 19)*a(n-6) + 3*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).

%F E.g.f.: exp(x)/3 - exp(-x*(x-2)/2)/8 - exp(x*(x+2)/2)/4 + exp(x*(3*x+2)/2)/24.

%F a(n) ~ 2^(-7/2) * 3^(n/2 - 1) * exp(sqrt(n/3) - n/2 - 1/12) * n^(n/2).

%F (End)

%F a(n) = 1/3 + (-1)^n*A001464(n)/8 - A000085(n)/4 + A115327(n)/24. - _Vaclav Kotesovec_, May 28 2016

%e For example, there are a(n) = 15 sets of this form in the case whereby n=6:

%e {{{12}, {34}}, {{34}, {56}}, {{12}, {56}}, {}}

%e {{{12}, {35}}, {{35}, {46}}, {{12}, {46}}, {}}

%e {{{12}, {36}}, {{36}, {45}}, {{12}, {45}}, {}}

%e {{{13}, {24}}, {{24}, {56}}, {{13}, {56}}, {}}

%e {{{13}, {25}}, {{25}, {46}}, {{13}, {46}}, {}}

%e {{{13}, {26}}, {{26}, {45}}, {{13}, {45}}, {}}

%e {{{14}, {23}}, {{23}, {56}}, {{14}, {56}}, {}}

%e {{{14}, {25}}, {{25}, {36}}, {{14}, {36}}, {}}

%e {{{14}, {26}}, {{26}, {35}}, {{14}, {35}}, {}}

%e {{{15}, {23}}, {{23}, {46}}, {{15}, {46}}, {}}

%e {{{15}, {24}}, {{24}, {36}}, {{15}, {36}}, {}}

%e {{{15}, {26}}, {{26}, {34}}, {{15}, {34}}, {}}

%e {{{16}, {23}}, {{23}, {45}}, {{16}, {45}}, {}}

%e {{{16}, {24}}, {{24}, {35}}, {{16}, {35}}, {}}

%e {{{16}, {25}}, {{25}, {34}}, {{16}, {34}}, {}}

%t a[n_] := n!*Sum[Sum[Sum[(2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(KroneckerDelta[i, j]+KroneckerDelta[i, k]+1)!), {k, Max[i, 2*i+2*j-Floor[n/2]], Min[2*j, Floor[1/4*(4*i+4*j-1)]]}], {j, 1, i}], {i, 1, Floor[n/2]}] ; Print[Table[a[n], {n, 1, 22}]] ;

%t Rest[CoefficientList[Series[E^x/3 - E^(-x*(x-2)/2)/8 - E^(x*(x+2)/2)/4 + E^(x*(3*x+2)/2)/24, {x, 0, 30}], x] * Range[0, 30]!] (* _Vaclav Kotesovec_, Apr 10 2016 *)

%Y Cf. A267840.

%K nonn,easy

%O 1,6

%A _John M. Campbell_, Jan 24 2016