The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266505 a(n) = 2*a(n - 2) + a(n - 4) with a(0) = -1, a(1) = 1, a(2) = 3, a(3) = 5. 3
 -1, 1, 3, 5, 5, 11, 13, 27, 31, 65, 75, 157, 181, 379, 437, 915, 1055, 2209, 2547, 5333, 6149, 12875, 14845, 31083, 35839, 75041, 86523, 181165, 208885, 437371, 504293, 1055907, 1217471, 2549185, 2939235, 6154277, 7095941, 14857739, 17131117, 35869755, 41358175, 86597249, 99847467 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n)/A266504(n) converges to sqrt(2). Alternatively, bisection of A266506. Alternatively, A135532(n) and A048655(n) interlaced. Alternatively, A255236(n-1), A054490(n), A038762(n) and A101386(n) interlaced. Let b(n) = (a(n) - (a(n) mod 2))/2, that is b(n) = {-1, 0, 1, 2, 2, 5, 6, 13, 15, 32, 37, 78, 90, ...}. Then: A006451(n) = {b(4n+0) U b(4n+1)} gives n in N such that triangular(n) + 1 is square; A216134(n) = {b(4n+2) U b(4n+3)} gives n in N such that triangular(n) follows form n^2 + n + 1 (twice a triangular number + 1). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,2,0,1). FORMULA G.f.: (-1 + 3*x)*(1 + x)^2/(1 - 2 x^2 - x^4). a(n) = (-(1+sqrt(2))^floor(n/2)*(-1)^n - sqrt(8)*(1-sqrt(2))^floor(n/2) - (1-sqrt(2))^floor(n/2)*(-1)^n + sqrt(8)*(1+sqrt(2))^floor(n/2))/2. a(n) = 3*(((1+sqrt(2))^floor(n/2)-(1-sqrt(2))^floor(n/2))/sqrt(8)) - (-1)^n*(((1+sqrt(2))^(floor(n/2)-(-1)^n)-(1-sqrt(2))^(floor(n/2)-(-1)^n))/sqrt(8)). a(n) = (3*A000129(floor(n/2)) - A000129(n-(-1)^n)), where A000129 gives the Pell numbers. a(n) = sqrt(2*A266504(n))^2 - 7(-1)^A266504(n))*sgn(2*n -1), where A266504 gives all x in N such that 2*x^2 - 7(-1)^x = y^2. This sequence gives associated y values. a(2n) = (-(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n - (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n) = A135532(n). a(2n) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) - (((1+sqrt(2))^(n-1)-(1-sqrt(2))^(n-1))/sqrt(8)) = A135532(n). a(2n+1) = (+(1 + sqrt(2))^n - sqrt(8)*(1 - sqrt(2))^n + (1 - sqrt(2))^n + sqrt(8)*(1 + sqrt(2))^n)/2 = a(2n + 1) = A048655(n). a(2n+1) = 3*(((1+sqrt(2))^n-(1-sqrt(2))^n)/sqrt(8)) + (((1+sqrt(2))^(n+1)-(1-sqrt(2))^(n+1))/sqrt(8)) = A048655(n). a(4n + 0) = 6*a(4n - 4) - a(4n - 8) = A255236(n-1). a(4n + 1) = 6*a(4n - 3) - a(4n - 7) = A054490(n). a(4n + 2) = 6*a(4n - 2) - a(4n - 6) = A038762(n). a(4n + 3) = 6*a(4n - 1) - a(4n - 5) = A101386(n). (sqrt(2*(a(2n + 1) )^2 + 14*(-1)^floor(n/2)))/2 = A266504(n). (a(2n + 1) + a(2n))/8 = A000129(n), where A000129 gives the Pell numbers. a(2n + 1) - a(2n) = A002203(n), where A002203 gives the companion Pell numbers. (a(2n + 2) + a(2n + 1))/2 = A000129(n+2). (a(2n + 2) - a(2n + 1))/2 = A000129(n-1). MAPLE a:=proc(n) option remember; if n=0 then -1 elif n=1 then 1 elif n=2 then 3 elif n=3 then 5 else 2*a(n-2)+a(n-4); fi; end:  seq(a(n), n=0..50); # Wesley Ivan Hurt, Jan 01 2016 MATHEMATICA LinearRecurrence[{0, 2, 0, 1}, {-1, 1, 3, 5}, 70] (* Vincenzo Librandi, Dec 31 2015 *) Table[SeriesCoefficient[(-1 + 3 x) (1 + x)^2/(1 - 2 x^2 - x^4), {x, 0, n}], {n, 0, 42}] (* Michael De Vlieger, Dec 31 2015 *) PROG (MAGMA) I:=[-1, 1, 3, 5]; [n le 4 select I[n] else 2*Self(n-2)+Self(n-4): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015 (PARI) x='x+O('x^30); Vec((-1+3*x)*(1+x)^2/(1-2*x^2-x^4)) \\ G. C. Greubel, Jul 26 2018 CROSSREFS Cf. A000129, A001333, A002203, A002965, A006451, A006452, A002965, A038761, A038762, A048654, A048655, A054490, A078343, A098586, A098790, A100525, A101386, A135532, A216134, A216162, A253811, A255236, A266504, A266505, A266507. Sequence in context: A093572 A317650 A240731 * A118132 A089167 A188345 Adjacent sequences:  A266502 A266503 A266504 * A266506 A266507 A266508 KEYWORD sign,easy AUTHOR Raphie Frank, Dec 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 03:28 EDT 2022. Contains 355030 sequences. (Running on oeis4.)