The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100525 Bisection of A048654. 6
 4, 22, 128, 746, 4348, 25342, 147704, 860882, 5017588, 29244646, 170450288, 993457082, 5790292204, 33748296142, 196699484648, 1146448611746, 6681992185828, 38945504503222, 226991034833504, 1323000704497802, 7711013192153308, 44943078448422046 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (6,-1). FORMULA G.f.: 2*(2-x)/(1-6*x+x^2). - Philippe Deléham, Nov 17 2008 a(0)=4, a(1)=22, a(n) = 6*a(n-1) - a(n-2) for n>1. - Philippe Deléham, Sep 19 2009 a(n) = 2*A038725(n+1). - R. J. Mathar, Sep 27 2014 a(n) = ( (5 + 4*sqrt(2))*(3 + 2*sqrt(2))^n - (5 - 4*sqrt(2))*(3 - 2*sqrt(2))^n )/(2*sqrt(2)). - Colin Barker, Oct 13 2015 From G. C. Greubel, Jun 28 2022: (Start) a(n) = 2*( 2*ChebyshevU(n, 3) - ChenyshevU(n-1, 3) ). E.g.f.: 2*exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (5/(2*sqrt(2)))*sinh(2*sqrt(2)*x) ). (End) MATHEMATICA CoefficientList[Series[(4-2x)/(1-6x+x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Oct 13 2015 *) LinearRecurrence[{6, -1}, {4, 22}, 30] (* Harvey P. Dale, Mar 25 2016 *) PROG (PARI) Vec((4-2*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 13 2015 (Magma) I:=[4, 22, 128]; [n le 3 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..40]]; // Vincenzo Librandi, Oct 13 2015 (SageMath) [2*(2*chebyshev_U(n, 3) - chebyshev_U(n-1, 3)) for n in (0..30)] # G. C. Greubel, Jun 28 2022 CROSSREFS Cf. A001109, A038761, A048654. Sequence in context: A121187 A011789 A047039 * A199033 A370695 A086682 Adjacent sequences: A100522 A100523 A100524 * A100526 A100527 A100528 KEYWORD easy,nonn AUTHOR Lambert Klasen (lambert.klasen(AT)gmx.de), Nov 24 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 20:28 EDT 2024. Contains 373401 sequences. (Running on oeis4.)