OFFSET
1,2
COMMENTS
Arises in combinatorial field theory.
REFERENCES
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..280
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering
FORMULA
MAPLE
with(combinat): A:=n->add((-1)^(n-k)*binomial(n, k)*bell(k), k=0..n)*add((k-1)!*binomial(n-1, k-1)*binomial(n, k-1), k=1..n): seq(A(n), n=1..18);
MATHEMATICA
a[n_]:= Sum[(-1)^(n-k) Binomial[n, k] BellB[k], {k, 0, n}] Sum[(k-1)! Binomial[n-1, k-1] Binomial[n, k-1], {k, n}];
Table[a[n], {n, 20}] (* Jean-François Alcover, Nov 11 2018 *)
PROG
(Magma)
F:= Factorial;
A000262:= func< n | F(n)*(&+[Binomial(n-1, k)/F(k+1): k in [0..n-1]]) >;
A000296:= func< n | (&+[(-1)^(n-k)*Binomial(n, k)*Bell(k): k in [0..n]]) >;
[A100524(n): n in [1..30]]; // G. C. Greubel, Jun 27 2022
(SageMath)
def A100524(n): return ( sum((-1)^(n-k)*binomial(n, k)*bell_number(k) for k in (0..n)) )*factorial(n-1)*gen_laguerre(n-1, 1, -1)
[A100524(n) for n in (1..30)] # G. C. Greubel, Jun 27 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 24 2004
STATUS
approved