login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100524
a(n) = ( Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*Bell(k) )*( Sum_{k=1..n} (k-1)!*binomial(n-1, k-1)*binomial(n, k-1) ).
1
0, 3, 13, 292, 5511, 166091, 6096546, 281962395, 15743194025, 1044554014702, 80967658322673, 7236647136567861, 737470098999168640, 84879860776191764271, 10943491685936397689965, 1569258830662933925039980, 248708981505469070789015751, 43323893019300876864736656191
OFFSET
1,2
COMMENTS
Arises in combinatorial field theory.
REFERENCES
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Some useful combinatorial formulas for bosonic operators, J. Math. Phys. 46, 052110 (2005) (6 pages).
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G E. H. Duchamp, Combinatorial field theories via boson normal ordering, preprint, Apr 27 2004.
LINKS
P. Blasiak, K. A. Penson, A. I. Solomon, A. Horzela and G. E. H. Duchamp, Combinatorial field theories via boson normal ordering
FORMULA
a(n) = ( Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*Bell(k) )*( Sum_{k=1..n} (k-1)!*binomial(n-1, k-1)*binomial(n, k-1) ).
a(n) = A000296(n)*A000262(n).
MAPLE
with(combinat): A:=n->add((-1)^(n-k)*binomial(n, k)*bell(k), k=0..n)*add((k-1)!*binomial(n-1, k-1)*binomial(n, k-1), k=1..n): seq(A(n), n=1..18);
MATHEMATICA
a[n_]:= Sum[(-1)^(n-k) Binomial[n, k] BellB[k], {k, 0, n}] Sum[(k-1)! Binomial[n-1, k-1] Binomial[n, k-1], {k, n}];
Table[a[n], {n, 20}] (* Jean-François Alcover, Nov 11 2018 *)
PROG
(Magma)
F:= Factorial;
A000262:= func< n | F(n)*(&+[Binomial(n-1, k)/F(k+1): k in [0..n-1]]) >;
A000296:= func< n | (&+[(-1)^(n-k)*Binomial(n, k)*Bell(k): k in [0..n]]) >;
A100524:= func< n | A000262(n)*A000296(n) >;
[A100524(n): n in [1..30]]; // G. C. Greubel, Jun 27 2022
(SageMath)
def A100524(n): return ( sum((-1)^(n-k)*binomial(n, k)*bell_number(k) for k in (0..n)) )*factorial(n-1)*gen_laguerre(n-1, 1, -1)
[A100524(n) for n in (1..30)] # G. C. Greubel, Jun 27 2022
CROSSREFS
Sequence in context: A042823 A132560 A128385 * A000859 A045748 A113526
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 24 2004
STATUS
approved