The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216162 Sequences A006452 and A216134 interlaced, where A216134 are the indices of the Sophie Germain triangular numbers. 10
 1, 0, 1, 1, 2, 4, 4, 9, 11, 26, 23, 55, 64, 154, 134, 323, 373, 900, 781, 1885, 2174, 5248, 4552, 10989, 12671, 30590, 26531, 64051, 73852, 178294, 154634, 373319, 430441, 1039176, 901273, 2175865, 2508794, 6056764, 5253004, 12681873, 14622323, 35301410 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Recall that the Pell numbers are sequence A000129. Then (a(2n) + a(2n - 1)) - (a(2n - 2) + a(2n - 3)) = A000129(n); n>1. It follows that sqrt(2) = lim n --> infinity ((a(2n + 2) + a(2n + 1)) - (a(2n - 2) + a(2n - 3)))/((a(2n + 2) + a(2n + 1)) - (a(2n) + a(2n - 1))). For example, for n = 5, then ((64 + 55) - (11 + 9))/((64 + 55) - (23 + 26)) = (119 - 20)/(119 - 49) = 99/70 = 1.41428571... (accurate to 5 digits). Observation: Bearing in mind a) that the covering radius of the Leech Lattice (Lambda_24) is sqrt 2 * the packing radius (see Conway and Sloane p. 480), and b) that pronic numbers (n^2 + n) are Kissing numbers for the A_n series of lattices (see Conway and Sloane p. 109), there appears to be a curious relationship between, at the least, the first 14 elements of this sequence and, to dimension 24, laminated lattice Kissing numbers (A002336) of form Lambda_n = n*y = n*(x^2 + x); true for n = 0, 1, 4, 6, 8, 15, 20, 24. This relationship can be segmented into two broad categories: type I and type II. Type I Formula: Lambda_d = d*((a(k) - a(|k-2|))^2 + (a(k) - a(|k-2|))) = d*(x^2 + x) = d*y {k} = {0, 1, 2, 3, 4, 5, 6, 7, 10, 11} Dimension = {d} = {0, 0, 0, 1, 1, 6, 4, 8, 15, 20} Avg. number spheres/dimension = {y} = {0, 0, 0, 2, 2, 12, 6, 30, 156, 870} (a(0) - a(2)) = (1 - 1) = 0 & 0*(0^2 + (0)) = 0 = Lambda_0 (a(1) - a(1)) = (0 - 0) = 0 & 0*(0^2 + (0)) = 0 = Lambda_0 (a(2) - a(0)) = (1 - 1) = 0 & 0*(0^2 + (0)) = 0 = Lambda_0 (a(3) - a(1)) = (1 - 0) = 1 & 1*(1^2 + (1)) = 2 = Lambda_1 (a(4) - a(2)) = (2 - 1) = 1 & 1*(1^2 + (1)) = 2 = Lambda_1 (a(5) - a(3)) = (4 - 1) = 3 & 6*(3^2 + (3)) = 72 = Lambda_6 (a(6) - a(4)) = (4 - 2) = 2 & 4*(2^2 + (2)) = 24 = Lambda_4 (a(7) - a(5)) = (9 - 4) = 5 & 8*(5^2 + (5)) = 240 = Lambda_8 (a(10) - a(8)) = (23 - 11) = 12 & 15*(12^2 + (12)) = 2340 = Lambda_15 (a(11) - a(9)) = (55 - 26) = 29 & 20*(29^2 + (29)) = 17400 = Lambda_20 Type II Formula: Lambda_d' = d'*((a(k') - a(|k'-1|))^2 + (a(k') - a(k'-1))) = d'*(x'^2 + x') = d'*y' {k'} = {0, 1, 3, 5, 7, 13} Dimension = {d'} = {1, 0, 0, 4, 8, 24} Avg. number spheres/dimension = {y'} = {2, 0, 0, 6, 30, 8190} Note that (y' + 2) is a power of 2 and, therefore, y'/2 is a Ramanujan-Nagell triangular number (A076046; also see A215929). (a(0) - a(1)) = (1 - 0) = 1 & 1*(1^2 + (1)) = 2 = Lambda_1 (a(1) - a(0)) = (0 - 1) = -1 & 0*(-1^2 + (-1)) = 0 = Lambda_0 (a(3) - a(2)) = (1 - 1) = 0 & 0*(0^2 + (0)) = 0 = Lambda_0 (a(5) - a(4)) = (4 - 2) = 2 & 4*(2^2 + (2)) = 24 = Lambda_4 (a(7) - a(6)) = (9 - 4) = 5 & 8*(5^2 + (5)) = 240 = Lambda_8 (a(13) - a(12)) = (154 - 64) = 90 & 24*(90^2 + (90)) = 196560 = Lambda_24 REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 3rd, 1999. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,1,0,6,0,-6,0,-1,0,1) FORMULA A006452 alternating with A216134. G.f. ( -1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9 ) / ( (x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1) ). - R. J. Mathar, Sep 08 2012 Given a(0)=1, a(2)=1, a(4)=2, a(6)=4, this entire sequence can be generated recursively: a(2n) = 6(a(n - 4)) - a(n - 8); n > 3, and a(2n+1) = a(2n) + (sqrt (8*a(2n) - 7) - 1)/2; for all n. - Raphie Frank, Sep 09 2012 PROG (PARI) Vec((-1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9)/((x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015 CROSSREFS Cf. A000129. For some k in n: a(2n) = A006452 (k^2 - 1 is triangular). a(2n + 1) = A216134 (T_k and 2T_k + 1 are triangular). a(2n + 1) - a(2n) = A006451 (T_k + 1 is square). a(2n + 1) + a(2n) = A124124 (T_k and (T_k - 1)/2 are triangular). a(4n + 1) + a(4n + 2) = A001108 (T_k is square). a(4n + 3) + a(4n + 4) = A001652 (T_k and 2T_k are triangular). Sum(a(n)) - 1 = A048776 for even n (the second partial summation of the Pell numbers). Sequence in context: A272196 A335057 A039887 * A114215 A292302 A151712 Adjacent sequences:  A216159 A216160 A216161 * A216163 A216164 A216165 KEYWORD nonn,easy AUTHOR Raphie Frank, Sep 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 02:56 EDT 2020. Contains 334613 sequences. (Running on oeis4.)