login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216162
Sequences A006452 and A216134 interlaced.
7
1, 0, 1, 1, 2, 4, 4, 9, 11, 26, 23, 55, 64, 154, 134, 323, 373, 900, 781, 1885, 2174, 5248, 4552, 10989, 12671, 30590, 26531, 64051, 73852, 178294, 154634, 373319, 430441, 1039176, 901273, 2175865, 2508794, 6056764, 5253004, 12681873, 14622323, 35301410
OFFSET
0,5
FORMULA
(a(2n) + a(2n - 1)) - (a(2n - 2) + a(2n - 3)) = A000129(n); n>1.
It follows that sqrt(2) = lim n --> infinity ((a(2n + 2) + a(2n + 1)) - (a(2n - 2) + a(2n - 3)))/((a(2n + 2) + a(2n + 1)) - (a(2n) + a(2n - 1))).
G.f. ( -1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9 ) / ( (x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1) ). - R. J. Mathar, Sep 08 2012
PROG
(PARI) Vec((-1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9)/((x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1))+O(x^99)) \\ Charles R Greathouse IV, Jun 12 2015
CROSSREFS
Cf. A000129.
For some k in n:
a(2n) = A006452 (k^2 - 1 is triangular).
a(2n + 1) = A216134 (T_k and 2T_k + 1 are triangular).
a(2n + 1) - a(2n) = A006451 (T_k + 1 is square).
a(2n + 1) + a(2n) = A124124 (T_k and (T_k - 1)/2 are triangular).
a(4n + 1) + a(4n + 2) = A001108 (T_k is square).
a(4n + 3) + a(4n + 4) = A001652 (T_k and 2T_k are triangular).
Sum(a(n)) - 1 = A048776 for even n (the second partial summation of the Pell numbers).
Sequence in context: A272196 A335057 A039887 * A114215 A292302 A151712
KEYWORD
nonn,easy
AUTHOR
Raphie Frank, Sep 07 2012
EXTENSIONS
Edited by N. J. A. Sloane, May 24 2021
STATUS
approved