login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sequences A006452 and A216134 interlaced.
7

%I #93 Feb 24 2023 08:58:07

%S 1,0,1,1,2,4,4,9,11,26,23,55,64,154,134,323,373,900,781,1885,2174,

%T 5248,4552,10989,12671,30590,26531,64051,73852,178294,154634,373319,

%U 430441,1039176,901273,2175865,2508794,6056764,5253004,12681873,14622323,35301410

%N Sequences A006452 and A216134 interlaced.

%H Colin Barker, <a href="/A216162/b216162.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,6,0,-6,0,-1,0,1)

%F (a(2n) + a(2n - 1)) - (a(2n - 2) + a(2n - 3)) = A000129(n); n>1.

%F It follows that sqrt(2) = lim n --> infinity ((a(2n + 2) + a(2n + 1)) - (a(2n - 2) + a(2n - 3)))/((a(2n + 2) + a(2n + 1)) - (a(2n) + a(2n - 1))).

%F G.f. ( -1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9 ) / ( (x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1) ). - _R. J. Mathar_, Sep 08 2012

%o (PARI) Vec((-1-x^3+5*x^4-3*x^5-2*x^6+x^7-2*x^8+x^9)/((x-1)*(1+x)*(x^4-2*x^2-1)*(x^4+2*x^2-1))+O(x^99)) \\ _Charles R Greathouse IV_, Jun 12 2015

%Y Cf. A000129.

%Y For some k in n:

%Y a(2n) = A006452 (k^2 - 1 is triangular).

%Y a(2n + 1) = A216134 (T_k and 2T_k + 1 are triangular).

%Y a(2n + 1) - a(2n) = A006451 (T_k + 1 is square).

%Y a(2n + 1) + a(2n) = A124124 (T_k and (T_k - 1)/2 are triangular).

%Y a(4n + 1) + a(4n + 2) = A001108 (T_k is square).

%Y a(4n + 3) + a(4n + 4) = A001652 (T_k and 2T_k are triangular).

%Y Sum(a(n)) - 1 = A048776 for even n (the second partial summation of the Pell numbers).

%K nonn,easy

%O 0,5

%A _Raphie Frank_, Sep 07 2012

%E Edited by _N. J. A. Sloane_, May 24 2021