login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216160
2^(2p-2) modulo p^3 for p=odd primes.
1
16, 6, 323, 1079, 924, 3044, 6252, 254, 21084, 4217, 42514, 48955, 63168, 101333, 90896, 87970, 164396, 100099, 85982, 221337, 464837, 90637, 214936, 735552, 171600, 330425, 437845, 311632, 363522, 1972311, 38777, 202213, 414082, 1471674, 860550, 346186
OFFSET
1,1
COMMENTS
2^(4*n) == (-1)^n*(2n)!/(n!)^2 (modulo p^3) (with n = (p-1)/2) for odd primes. Except for p = 3 (n = 1), where the second expression = 25 instead of 16.
LINKS
F. Morley, Note on the Congruence 2^4n == (-1)^n*(2n)!/(n!)^2 where 2n+1 is a prime, Annals of Mathematics, Vol. 9 (1894 - 1895), pp. 168-170.
MAPLE
a:= proc(n) local p; p:= ithprime(n+1);
2 &^ (2*p-2) mod p^3
end:
seq (a(n), n=1..50); # Alois P. Heinz, Sep 05 2012
MATHEMATICA
Table[Mod[2^(2Prime[n] - 2), Prime[n]^3], {n, 2, 30}] (* Alonso del Arte, Sep 03 2012 *)
Table[PowerMod[2, 2p-2, p^3], {p, Prime[Range[2, 40]]}] (* Harvey P. Dale, Jun 09 2024 *)
PROG
(PARI) a(n) = { local(p); p = prime(n+1); return (2^(2*p-2) % (p^3)); }
CROSSREFS
Cf. A065091.
Sequence in context: A057964 A302463 A303245 * A302371 A303087 A302892
KEYWORD
nonn
AUTHOR
Michel Marcus, Sep 03 2012
STATUS
approved