login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216158
The total number of nonempty words in all length n finite languages on an alphabet of two letters.
2
0, 2, 6, 24, 72, 220, 652, 1848, 5160, 14130, 38102, 101296, 266328, 692740, 1785524, 4563888, 11577888, 29170128, 73032808, 181793136, 450100760, 1108868820, 2719167020, 6639085968, 16144137800, 39107596850, 94393612782, 227062741160, 544439640328, 1301446217244
OFFSET
0,2
COMMENTS
A finite language is a set of distinct words with size being the total number of letters in all words.
LINKS
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 64.
FORMULA
a(n) = Sum_{k>0} k * A208741(n,k).
EXAMPLE
a(3) = 24 because the sets (languages) are {a,aa}; {a,ab}; {a,ba}; {a,bb}; {b,aa}; {b,ab}; {b,ba}; {b,bb}; {aaa}; {aab}; {aba}; {abb}; {baa}; {bab}; {bba}; {bbb} where the distinct words are separated by commas.
MAPLE
h:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(
(p-> p+[0, p[1]*j])(binomial(2^i, j)*h(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> h(n$2)[2]:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 24 2017
MATHEMATICA
nn=30; p=Product[(1+y x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[D[p, y]/.y->1, {x, 0, nn}], x]
CROSSREFS
Cf. A102866.
Sequence in context: A338614 A087645 A174700 * A178847 A173844 A107761
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Sep 03 2012
STATUS
approved