OFFSET
0,2
COMMENTS
A finite language is a set of distinct words with size being the total number of letters in all words.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, Cambridge Univ. Press, 2009, page 64.
FORMULA
a(n) = Sum_{k>0} k * A208741(n,k).
EXAMPLE
a(3) = 24 because the sets (languages) are {a,aa}; {a,ab}; {a,ba}; {a,bb}; {b,aa}; {b,ab}; {b,ba}; {b,bb}; {aaa}; {aab}; {aba}; {abb}; {baa}; {bab}; {bba}; {bbb} where the distinct words are separated by commas.
MAPLE
h:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(
(p-> p+[0, p[1]*j])(binomial(2^i, j)*h(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> h(n$2)[2]:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 24 2017
MATHEMATICA
nn=30; p=Product[(1+y x^i)^(2^i), {i, 1, nn}]; CoefficientList[Series[D[p, y]/.y->1, {x, 0, nn}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Sep 03 2012
STATUS
approved