login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The total number of nonempty words in all length n finite languages on an alphabet of two letters.
2

%I #36 Nov 22 2023 10:34:01

%S 0,2,6,24,72,220,652,1848,5160,14130,38102,101296,266328,692740,

%T 1785524,4563888,11577888,29170128,73032808,181793136,450100760,

%U 1108868820,2719167020,6639085968,16144137800,39107596850,94393612782,227062741160,544439640328,1301446217244

%N The total number of nonempty words in all length n finite languages on an alphabet of two letters.

%C A finite language is a set of distinct words with size being the total number of letters in all words.

%H Alois P. Heinz, <a href="/A216158/b216158.txt">Table of n, a(n) for n = 0..1000</a>

%H Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 64.

%F a(n) = Sum_{k>0} k * A208741(n,k).

%e a(3) = 24 because the sets (languages) are {a,aa}; {a,ab}; {a,ba}; {a,bb}; {b,aa}; {b,ab}; {b,ba}; {b,bb}; {aaa}; {aab}; {aba}; {abb}; {baa}; {bab}; {bba}; {bbb} where the distinct words are separated by commas.

%p h:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0, add(

%p (p-> p+[0, p[1]*j])(binomial(2^i, j)*h(n-i*j, i-1)), j=0..n/i)))

%p end:

%p a:= n-> h(n$2)[2]:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Sep 24 2017

%t nn=30;p=Product[(1+y x^i)^(2^i),{i,1,nn}];CoefficientList[Series[D[p,y]/.y->1,{x,0,nn}],x]

%Y Cf. A102866.

%K nonn

%O 0,2

%A _Geoffrey Critzer_, Sep 03 2012