OFFSET
3,3
COMMENTS
phi(n) : A000010 is the Euler totient function, and even for n > 2.
If n prime, phi(n) = n-1 and a(n) = a((n-1)/2).
LINKS
Michel Lagneau, Table of n, a(n) for n = 3..10000
EXAMPLE
a(13) = 20 because the divisors of phi(13) = 12 are {1, 2, 3, 4, 6, 12} and (12 + 6 + 4 +2) - (3 + 1) = 20.
MAPLE
with(numtheory):for n from 3 to 100 do:x:=divisors(phi(n)):n1:=nops(x):s0:=0:s1:=0:for m from 1 to n1 do: if irem(x[m], 2)=0 then s0:=s0+x[m]:else s1:=s1+x[m]:fi:od:if s0>s1 then printf(`%d, `, s0-s1):else fi:od:
MATHEMATICA
Table[Total[Select[Divisors[EulerPhi[n]], EvenQ[#]&]]-Total[Select[Divisors[EulerPhi[n]], OddQ[#]&]], {n, 3, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 02 2012
STATUS
approved